cho dãy tỉ số bằng nhau a/n+2 = b/n+5 = c/n+8 (n thuộc N)
Chứng minh rằng : (a-c)^2=4(a-b)(b-c)
cho dãy tỉ số bằng nhau a/n+2 = b/n+5 = c/n+8 (n thuộc N)
Chứng minh rằng : (a-c)^2=4(a-b)(b-c)
Cho dãy tỉ số bằng nhau:\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}\)(với \(n\in N\))
Chứng minh rằng:\(\left(a+c\right)^2=4\left(a-b\right)\left(b-c\right)\)
\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=k\Leftrightarrow a=nk+2k;b=nk=5k;c=nk+8k\)
\(\left(a+c\right)^2=\left(nk+2k+nk+8k\right)^2=4k^2\left(n+5\right)^2\) ( sai nhế)
\(4\left(a-b\right)\left(b-c\right)=4\left(nk+2k-nk-5k\right)\left(nk+5k-nk-8k\right)=4\left(-3k\right)\left(-3k\right)=36k^2\)
\(\left(a-c\right)^2=\left(nk+2k-nk-8k\right)^2=4\left(-6k\right)^2=36k^2\)
=> \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)
Cho dãy tỉ số bằng nhau \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}\)Chứng minh rằng: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
câu 1 :cho a,b,c thuộc N. hỏi a . b . a + b có tận cùng bằng 9 không?
câu 2 :cho n thuộc N . chứng minh rằng 5n - 1 chia hết cho 4
câu 3 : cho n thuộc N. chứng minh rằng n + n2 không chia hết cho 4 và không chia hết cho 5.
giúp mình với mình đang cần trước thứ 4. ai nhanh nhất mình tick 3 lần cho nhé
Bài1: Tìm số nguyên n, biết
a) n - 4 chia hết cho n -1
b) 2n là bội của n - 2
c) n + 1 là ước của n2 + 7
Bài 2: Chứng minh rằng 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Bài 3: Cho a > b, tính | S | biết: S = - ( a - b - c) +x( - c + b + a) - (a + b)
Bài 4: Cho M = ( - a + b) - (b + c - a) + ( c - a), trong đó b, c thuộc Z còn a là một số nguyên âm. Chứng minh rằng biểu thức M luôn dương.
Bài 5: Tìm x thuộc Z biết 2\(\le\)|x|\(\le\)5
Bài 6: Tìm 2 số nguyên mà tích của chúng bằng hiệu của chúng.
Bài 6:
Gọi 2 số nguyên đó lần lượt là a và b \(\left(a,b\in Z\right)\)
Ta có:
\(ab=a-b\Leftrightarrow ab+b=a\)
\(\Leftrightarrow b\left(a+1\right)=a\Leftrightarrow b=\frac{a}{a+1}\left(a+1\ne0\Leftrightarrow a\ne-1\right)\)
Lại có: \(\frac{a}{a+1}=\frac{a+1-1}{a+1}=\frac{a+1}{a+1}-\frac{1}{a+1}=1-\frac{1}{a+1}\)
\(\Rightarrow1⋮a+1\Rightarrow a+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow a\in\left\{0;-2\right\}\) (thỏa mãn)
*)Xét \(a=0\)\(\Leftrightarrow b=\frac{a}{a+1}=\frac{0}{0+1}=0\) (thỏa mãn)
*)Xét \(a=-2\)\(\Leftrightarrow b=\frac{a}{a+1}=\frac{-2}{-2+1}=2\) (thỏa mãn)
Bài1: Tìm số nguyên n, biết
a) n - 4 chia hết cho n -1 (n khác 1)
\(\frac{n-4}{n-1}=\frac{n-1-3}{n-1}=1-\frac{3}{n-1}\)
Để \(\frac{n-4}{n-1}\in Z\) thì \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\Leftrightarrow n\in\left\{0;2:-2;4\right\}\)
b) 2n là bội của n - 2 (n khác 2)
Để \(2n⋮n-2\) thì \(n-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Leftrightarrow n\in\left\{1;3;0;4\right\}\)
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
1) Cho a+b+c =0 . Chứng minh rằng M=N=P
M=a(a+b)(a+c) N=b(b+c)(b+a) P=c(c+a)(c+b)
2) Cho M= (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x2 . Biết x=1/2a +1/2b+1/2c. Tính M theo a,b,c
3) Cho dãy số 1,3,6,10,15,...,n(n+1)/2 ,...Chứng minh rằng tổng 2 số liên tiếp của dãy bao giờ cũng là số chính phương
4) a Chứng minh rằng với mọi a,b,c luôn có (a+b+c)(ab+bc+ca)- abc =(a+b)(b+c)(c+a)
b áp dụng chứng minh rằng nếu 1/a+1/b+1/c = 1/a+b+c thì 1/a2n+1+1/b2n+1+1/c2n+1= 1/a2n+1+b2n+1+c2n+1 với mọi n thuộc N
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)
\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)
\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)
\(=\frac{n\left(n-1+n+1\right)}{2}\)
\(=\frac{n\times2n}{2}\)
\(=n^2\)
\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương