Tìm số nguyên x để biểu thức sau là số chính phương :
\(x^4+2x^3+2x^2+x+3\) .
Tìm x thuộc Z để giá trị biểu thức M = \(\frac{x2+2x-13}{x-3}\)
là một số nguyên.
\(\frac{x^2+2x-13}{x-3}\)
Đề như thế này à bạn.
Tìm các giá trị nguyên của x để phân thức sau là số nguyên
M=\(\dfrac{2x^2-3x+3}{x-2}\)
Lời giải:
$M=\frac{2x^2-3x+3}{x-2}=\frac{(2x^2-4x)+(x-2)+5}{x-2}$
$=\frac{2x(x-2)+(x-2)+5}{x-2}=2x+1+\frac{5}{x-2}$
Với $x$ nguyên, để $M$ nguyên thì $\frac{5}{x-2}$ nguyên
$\Rightarrow x-2$ là ước của $5$ (do $x$ nguyên)
$\Rightarrow x-2\in\left\{5;-5;1;-1\right\}$
$\Rightarrow x\in\left\{7; -3; 3; 1\right\}$
Cho biểu thức B= \(\dfrac{\left(x+4\right).x-2}{x+4}\)
(với x ≠ -4).
Tìm số nguyên x để B có giá trị là số nguyên
\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)
\(B=x-\dfrac{2}{x+4}\)
Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)
\(\Leftrightarrow2⋮\left(x+4\right)\)
\(\Leftrightarrow x+4\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng sau
\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)
Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)
1) CMR các số sau là hợp số:
a) \(4^{20}-1\) .
b) 1000001.
2) Tìm số tự nhiên n để giá trị của biểu thức sau là số nguyên tố: \(12n^2-5n-25\) .
3) CMR: các số sau không là số chính phương
\(A=222...2224\) (có 50 chữ số 2)
\(B=444...444\) (100 chữ số 4)
4) Tìm số nguyên tố P để 4P+1 là số chính phương.
1. Cho biểu thức A = 3/n-5
a. tìm số nguyên n để A là phân số
b tìm số nguyên n để A là số nguyên
2. Cho biểu thức A=1/21 + 1/22 +...+ 1/40. Chứng tỏ 1/2 < A < 1
3. Tính A = 1/1.2 + 1/2.3 +...+ 1/49.50
B =12/1.2 .22/2.3 . 33/3.4 x...x 992/99.100
4. Chứng tỏ hiệu sau là một số nguyên 1002008 +2/3 - 1002009 +17/9
5. Chứng minh các phân số sau là phan số tối giản A= 12n+1/30n+2
6. Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
A=(x-1)2 + 2008
B = /x+4/ + 1996
7. Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
P = 2010- (x+1)2008
Q = 1010 - /3-x/
8. Cho biểu thức
A = 1/2 + 1/22+1/23 + 1/24 +...+ 1/2100. Chứng tỏ A < 1
9. So sánh
A = 108+2/108-1 và B = 108/108-3
10.Tính tổng
S = 1 + 2 + 22 + 23+...+ 22008/1 - 22009
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
2.
\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}
9.
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}
Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên .
bài 1: Cho biểu thức:
A=( 2 + x phần 2 - x - 4x mũ 2 phần x mũ 2 - 4 - 2 - x phần 2 + x): 2(x - 3) phần 2 - x
a. Rút gọn biểu thức A
b. TÍnh giá trị của A khi |x - 2| = 2
c. TÌm x là số nguyên dương để A là số dương
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
Tìm các giá trị nguyên của x để phân thức sau là số nguyên
\(M=\frac{2x^2-3x+3}{x-2}\)
Chứng minh rằng : Có vô số số nguyên x để biểu thức sau là số chình phương :
\(\left(1+2+3+...+x\right)\left(1^2+2^2+3^2+...+x^2\right)\) .
\(H=\frac{x\left(x+1\right)}{2}.\frac{x\left(x+1\right)\left(2x+1\right)}{6}=x^2\left(x+1\right)^2.\frac{2x+1}{12}\)
tồn tại vô số nguyên dương x để \(\frac{2x+1}{12}\) là số chính phương => ...