Phân tích đa thức thành nhân tử:
x^2-y^2-2xy+y^2
phân tích đa thức thành nhân tử:
x^3-y^3+2x^2+2xy
Đa thức này ko phân tích thành nhân tử được
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
Phân tích đa thức sau thành nhân tử:
x^2/4+2xy+4y^2
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
phân tích đa thức sau thành nhân tử:x^2-y^2+7x-7y
(x^2 +7x)-(y^2+7y)
=x(x+7)-y(y+7)
=(x+7)(y+7)(x-y)
Phân tích đa thức thành nhân tử:x2-3y2-8z2+2xy-10yz+2zx
\(x^2-3y^2-8z^2+2xy-10yz+2xz\)
\(=x^2-3y^2-8z^2+3xy-xy-4yz-6yz+4xz-2xz\)
\(=\left(x^2+3xy+4xz\right)+\left(-xy-3y^2-4yz\right)+\left(-2xz-6yz-8z^2\right)\)
\(=x\left(x+3y+4z\right)-y\left(x+3y+4z\right)-2z\left(x+3y+4z\right)\)
\(=\left(x+3y+4z\right)\left(x-y-2z\right)\)
Phân tích đa thức thành nhân tử:x-y+cănxy^2-căny^3
\(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
phân tích đa thức thành nhân tử:x(y+z)^2-y(z-x)^2+z(x+y)^2-x^3+y^3-z^3-4xyz
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
phân tích đa thức sau thành nhân tử:x^6-3x^4+3x^2-1-y^3
phân tích đa thức thành nhân tử:x^6+x^4+x^2y^2+y^4-y^6
giúp mk với mk tick cho
\(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2-1\right)\)
\(=\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\left(x^2-y^2-1\right)\)
Phân tích đa thức sau thành nhân tử:
x(y-1)+3(y-1)
`#3107.101107`
`x(y - 1) + 3(y - 1)`
`= (x + 3)(y - 1)`
x(y-1)+3(y-1)
=(y-1)(x+3)
Giải thích: đặt y-1 ra làm chung .... đa thức còn x+3
Phân tích đa thức sau thành nhân tử:x6-y6+(x4+x2y2+y4)
x6—y6+(x4+x2 y2+y4)=(x2)3—(y2)3+(x4+x2 y2+y4)
=(x2 — y2)(x4+x2 y2+y4)+(x4+x2 y2+y4)
=(x4+x2 y2+y4)(x2 — y2+1)