cho \(m\ne0\) và \(n\ne0\) là các nghiệm của phương trình \(x^2+mx+n=0\). Tính tổng m+n.
Cho m và n là 2 số nguyên , \(n\ne0\). Tìm 1 phương trình có dạng ax + b = 0 có nghiệm \(x=\frac{m}{n}\)
Bạn có thể lấy ví dụ bất kỳ như:
3x-2=0 => x=\(\frac{2}{3}\)
5x-15=0 => x=3 hay x=\(\frac{3}{1}\)
1Nếu m và n là nghiệm của phương trình \(x^2+mx+n=0,m,n\ne0\) Thì tổng các nghiệm là bao nhiêu
2 có bao nhiêu giá trị của để pt \(x^2+ã+1=0vx^2-x-a=0\) có nghiệm chung
cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thìcacs nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ
Cho m, n, p, q là các số thực thỏa mãn n+q\(\ne0\) và\(\frac{mp}{n+q}\ge2\)
Chứng minh rằng phương trình ẩn x sau luôn có nghiệm: \(\left(x^2+mx+n\right)\left(x^2+px+q\right)=0\)
Lời giải:
Giả sử phương trình đã cho vô nghiệm. Điều này tương đương với hai PT con là \(x^2+mx+n=0(1)\) và \(x^2+px+q=0(2)\) vô nghiệm.
\(\Rightarrow \left\{\begin{matrix} \Delta_{(1)}=m^2-4n< 0\\ \Delta_{(2)}=p^2-4q< 0\end{matrix}\right.\)
\(\Rightarrow 4(n+q)> m^2+p^2\)
\(\Rightarrow \left\{\begin{matrix} 4(n+q)> m^2+p^2\geq 0, \forall m,p\in\mathbb{R}\\ 4(n+q)-2mp> (m-p)^2\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} n+q>0\\ 2(n+q)> mp\end{matrix}\right.\Rightarrow 2> \frac{mp}{n+p}\) (trái với giả thiết)
Do đó điều giả sử là sai, hay PT đã cho luôn có nghiệm.
cho các phương trình x^2+mx+ nvà x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+ nvà x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
Cho phương trình px2 + qx +1 = 0 (1) với p;q là các số hữu tỉ . Biết ... Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có: ... Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ. Dođó muốn (*) nghiệm đúng thì ta phải có đồng thời: { 31p + 4q + 1 = 0 { 8p + q = 0. Dễ dàng giải hệ này có p = 1; q = - 8