Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aug.21
Xem chi tiết
Phùng Lưu Minh Anh
14 tháng 3 2020 lúc 10:42

Bạn có thể lấy ví dụ bất kỳ như:

3x-2=0 => x=\(\frac{2}{3}\)

5x-15=0 => x=3 hay x=\(\frac{3}{1}\)

Khách vãng lai đã xóa
Quỳnh Hà
Xem chi tiết
D.S Gaming
Xem chi tiết
D.S Gaming
Xem chi tiết
chikaino channel
Xem chi tiết
D.S Gaming
Xem chi tiết
phan thai tuan
14 tháng 3 2018 lúc 22:03

Chắc pt đầu là x^2+mx+n (:))

Từ điều kiện ta có m khác p, n khác q

Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)

Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ

Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ

cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ

le duc minh vuong
Xem chi tiết
Akai Haruma
30 tháng 5 2019 lúc 10:39

Lời giải:

Giả sử phương trình đã cho vô nghiệm. Điều này tương đương với hai PT con là \(x^2+mx+n=0(1)\)\(x^2+px+q=0(2)\) vô nghiệm.

\(\Rightarrow \left\{\begin{matrix} \Delta_{(1)}=m^2-4n< 0\\ \Delta_{(2)}=p^2-4q< 0\end{matrix}\right.\)

\(\Rightarrow 4(n+q)> m^2+p^2\)

\(\Rightarrow \left\{\begin{matrix} 4(n+q)> m^2+p^2\geq 0, \forall m,p\in\mathbb{R}\\ 4(n+q)-2mp> (m-p)^2\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} n+q>0\\ 2(n+q)> mp\end{matrix}\right.\Rightarrow 2> \frac{mp}{n+p}\) (trái với giả thiết)

Do đó điều giả sử là sai, hay PT đã cho luôn có nghiệm.

D.S Gaming
Xem chi tiết
D.S Gaming
Xem chi tiết
Hoàng Phú Huy
15 tháng 3 2018 lúc 8:33

Cho phương trình px2 + qx +1 = 0 (1) với p;q là các số hữu tỉ . Biết ... Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có: ... Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ. Dođó muốn (*) nghiệm đúng thì ta phải có đồng thời: { 31p + 4q + 1 = 0 { 8p + q = 0. Dễ dàng giải hệ này có p = 1; q = - 8