Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kẻ Dối_Trá
Xem chi tiết
Phương Trình Hai Ẩn
22 tháng 8 2017 lúc 7:51

đây nhé bạn

Doraemon
6 tháng 1 2019 lúc 10:21

fraction{320}{3}

khanhhuyen6a5
Xem chi tiết
Ngô Tấn Đạt
24 tháng 12 2017 lúc 16:29

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\\ \Rightarrow\dfrac{2abz-3acy}{a}=\dfrac{6bcx-2abz}{2b}=\dfrac{3acy-6bcx}{3c}\\ =\dfrac{\left(2abz-3acy\right)+\left(6bcx-2abz\right)+\left(3acy-6bcx\right)}{a+2b+3c}\\ =\dfrac{\left(2abz-2abz\right)+\left(3acy-3acy\right)+\left(6bcx-6bcx\right)}{a+2b+3c}=0\\ \)

\(\Rightarrow2bz-3cy=3cx-az=ay-2bx=0\\ \Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)

\(2bz=3cy\Rightarrow\dfrac{2b}{y}=\dfrac{3c}{z}\\ 3cx=az\Rightarrow\dfrac{3c}{z}=\dfrac{a}{x}\\ ay=2bx\Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}\\ \Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}=\dfrac{3c}{z}\Rightarrow.....\)

LÊ HOÀNG ANH
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Vũ Nguyễn Minh Thư
17 tháng 11 2023 lúc 18:41

Câu hỏi
# Cho dãy tỉ số bằng nhau ( 2bz-3cy )/a=(3cx az)/2b=(ay-2bx)/3c. Chứng minh: x/a=y/2b=z/3c.
Trả lời
Đáp án:+Giải thích các bước giải:

![image](https://mathresource.studyquicks.com/tiku/seahk_43506b6eddfc9f0c8237d9f9d28c094a.jpg)

bạn tìm trên link này nhá mk ko gửi hình ảnh đc

Nguyễn Thị Linh
Xem chi tiết
Minh cute
Xem chi tiết
Ngọc
27 tháng 1 2018 lúc 19:38

Hoàng trung kiên , ngta đã làm gì đâu mà bạn chửi ?

Kiên-Messi-8A-Boy2k6
28 tháng 1 2018 lúc 9:23

bạn ơi. cho mk xin lỗi nhé bn

M<ình cho bạn phạm văn tuấn mượn nick mk  lên bạn ấy vào phá

Cho mk xin lỗi đc không

Mong bạn thứ lỗi cho mk nhé

Kiên-Messi-8A-Boy2k6
28 tháng 1 2018 lúc 9:30

Hôm nay mình mới được vào OLM thì mới thấy  caaub trả lời này bạn tuấn chửi tục bạn ạ

XIn lỗi mọi người nhiều

___Vương Tuấn Khải___
Xem chi tiết
Shizadon
25 tháng 12 2017 lúc 19:30

Ta có : \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

=> \(\dfrac{\left(2bz-3cy\right)a}{a^2}=\dfrac{\left(3cx-az\right)2b}{4b^2}=\dfrac{\left(ay-2bx\right)3c}{9c^2}\)

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}=\dfrac{2bza-3cya+6xb-2bza+3cya-6cxb}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)Ta có : \(\dfrac{2bza-3cya}{a^2}=0\)

=> 2bza - 3cya = 0

=> 2bza = 3cya

=> \(\dfrac{y}{2b}=\dfrac{z}{3c}\) (1)

Ta có : \(\dfrac{6cxb-2bza}{4b^2}=0\)

=> 6cxb - 2bza = 0

=> 6cxb = 2bza

=> 3cx = za

=> \(\dfrac{z}{3c}=\dfrac{x}{a}\) (2)

Từ (1),(2) => \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (ĐPCM)

Trần Quốc Tuấn hi
Xem chi tiết
Vũ Minh Tuấn
15 tháng 1 2020 lúc 21:14

Ta có: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}.\)

\(\Rightarrow\frac{a.\left(2bz-3cy\right)}{a^2}=\frac{2b.\left(3cx-az\right)}{4b^2}=\frac{3c.\left(ay-2bx\right)}{9c^2}.\)

\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\frac{\left(2abz-2abz\right)-\left(3acy-3acy\right)+\left(6bcx-6bcx\right)}{a^2+4b^2+9c^2}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{2bz-3cy}{a}=0\\\frac{3cx-az}{2b}=0\\\frac{ay-2bx}{3c}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\\3cx-az=0\\ay-2bx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{matrix}\right.\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Trần Ngọc Yến Nhi
Xem chi tiết
pokemon pikachu
27 tháng 12 2017 lúc 10:31

https://goo.gl/xr4NMs

Trần Ngọc Yến Nhi
27 tháng 12 2017 lúc 19:02

Là sao?

Trần Hải Nam
5 tháng 4 2018 lúc 22:06

Từ\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}\Rightarrow4b^2z-6bcy=3acx-a^2z\)

\(\Rightarrow\)\(\left(4b^2+a^2\right)z=3c\left(ax+2by\right)\)

\(\Rightarrow\frac{z}{3c}=\frac{ax+2by}{a^2+4b^2}=\frac{ax}{a^2}=\frac{2by}{4b^2}\Rightarrow\frac{z}{3c}=\frac{x}{a}=\frac{y}{2b}\)