Phân tích thành nhân tử : x^3(y+z^2)+y^3(z+x^2)+z^3(x+y^2)+xyz(xyz+1)
Bài 1 phân tích đa thức thành nhân tử z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)
\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)
\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)
\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)
\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)
\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)
\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)
Tick hộ nha bạn 😘
z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
x^3(y+z^2) +y^3(z+x^2) +z^3(x+y^2) +xyz(xyz+1) phân tích ra nhân tử giúp với T_T
Phân tích đa thức thành nhân tử:
y3(z-x2)-z3(x+y2)-x3(y-z2) +xyz(xyz+1)
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)
Đề bài: Phân tích đa thức thành nhân tử:
x3.(z-y2)+y3(x-z2)+z3(y-x2)+xyz(xyz-1)
Làm giúp mình bài này với mấy bạn
Phân tích đa thức thành nhân tử:
a) xy(x+y)-yz(y+z)+xz(x-z)
b) x(y2+z2)+y(z2+x2)+z(x2+y2)+2abc
c) (x+y)(x2-y2)+(y+z)(y2-z2)+(z+x)(z2-x2)
d) x3(y-z)+y3(z-x)+z3(x-y)
e) x3(z-y2)+y3(x-z2)+z3(y-z2)+xyz(xyz-1)
phân tích đa thức thành nhân tử
(x +y )(y+z)(z+x)+xyz
x^2 + x +2
x^2 - y^2 +10x - 6y +16
x^2 (x - y) + y^2 (z- x) + z^2(x- y )
Ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz=x^2y+xy^2+xyz+y^2z+yz^2+xyz+xz^2+x^2x+xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+zx\left(x+y+z\right)=\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(x^2-y^2+10x-6y+16=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2=\left(x+y+8\right)\left(x-y+2\right)\)
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y-z\right)\left(y+z\right)\)
\(=\left(y-z\right)\left(x^2+yz-xy-xz\right)=\left(y-z\right)\left(x-y\right)\left(z-x\right)\)
Phân tích đa thức thành nhân tử
1. (x+y)(y+z)(z+x)+xyz
2. x^8+x^4+1
Phân tích đa thức thành nhân tử
d (a² + a)² + 4(a² + a) - 12
e) (x² + x + 1)( x² + x + 2) -12
g) x⁸ + x + 1 h) x¹⁰ + x⁵ + 1
i) x³ ( z -y² ) + y³ ( x - z² ) + z³ ( y - x² ) + xyz( xyz - 1 )
k) x(y - z)² + y(z - x)² + z(x - y)² - x³ - y³ - z³ + 4xyz
l) (x + y + z)³ - (x + y - z)³ - (y + z - x)³ - (z + x - y)³
mọi người ơi giúp mk nhanh nha cần ngay bây giờ
d) \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12=\left(a^2+a\right)^2+4\left(a^2+a\right)+16-4\)
\(=\left(a^2+a+2\right)^2-4=\left(a^2+a+2-4\right)\left(a^2+a+2+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+6\right)=\left(a-1\right)\left(a+2\right)\left(a^2+a+6\right)\)