Cho tam giác ABC, trên tia AB lấy D sao cho BD = BA, trên tia AC lấy E sao cho CE = CA. Gọi M là trung điểm của BC, kéo dài AM lấy MI = MA.
Chứng minh: a) Tam giác MAB = Tam giác MIC
b) BI song song với AC.
c) I là trung điểm của DE.
Bài 2: Cho tam giác ABC có AB=5cm; AC=7cm;BC=9cm.Kéo dài AB lấy điểm D sao cho BD=BA kéo dài AC lấy điểm E sao cho CE=CA.kéo dài đường trung tuyến AM của tam giác ABC lấy MI=MA.
2) Cm 3 điểm I;S;K thẳng hàng
Bài 1:Cho tam giác ABC, trên tia đối của tia BA lấy điểm D sao cho BA = BD , trên tia đối của tia CA lấy điểm F sao cho CF = CA. Gọi M là trung điểm của BC, kéo dài AM một đoạn sao cho ME = MA. CMR :a) tam giác MAB = tam giác MEC;b) AC //BE;c) E là trung điểm của DF.
Bài 2 : cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đường. Trên tia đối của tia DA lấy điểm I sao cho DI =DA, trên tia đối của tia CB lấy điểm K sao cho CK=CB.CM:a)AD//BC;b) tam giác ODI = tam giác OCK; c)3 điểm K, O, I thẳng hàng;d) góc AIB = góc AKB
cho tam giác ABC có AB = 5cm, AC= 7cm, BC= 9cm. Kéo dài AB lấy điểm D sao cho BD= BA, kéo dài AC lấy điểm E sao cho CE= CA. Kéo dài đường trung tuyến AM của tam giác ABC lấy MA=MI
1, cm DI // BC
2, Ba điểm D, I, E thẳng hàng
a) Ta có: \(\dfrac{AB}{AD}=\dfrac{AM}{AI}=\dfrac{1}{2}\)
⇒ DI // BM
mà M ∈ BC ⇒ DI // BC ( 1 )
b) Ta có: \(\dfrac{BA}{AD}=\dfrac{CA}{CE}=\dfrac{1}{2}\)
⇒ BC // DE ( 2 )
Từ ( 1) và ( 2) có: DE // BC (cmt) và DI // BC (cmt)
Ta thấy qua điểm D nằm ngoài BC kẻ được 2 đường thẳng song song với BC, điều này trái với tiên đề Ơ-clít nên hai đường thẳng DE và DI phải trùng nhau
⇒ D, I, E cùng nằm trên một đường thẳng
⇒ D, I, E thẳng hàng
1) Xét ΔADI có
B là trung điểm của AD(gt)
M là trung điểm của AI(gt)
Do đó: BM là đường trung bình của ΔADI(Định nghĩa đường trung bình của tam giác)
Suy ra: BM//DI(Định lí 2 về đường trung bình của tam giác)
hay DI//BC
2) Xét ΔAIE có
M là trung điểm của AI(gt)
C là trung điểm của AE(gt)
Do đó: MC là đường trung bình của ΔAIE(Định nghĩa đường trung bình của tam giác)
Suy ra: MC//IE(Định lí 2 về đường trung bình của tam giác)
hay IE//BC
Ta có: DI//BC(cmt)
IE//BC(cmt)
mà DI và IE có điểm chung là I
nên D,I,E thẳng hàng(đpcm)
cho tam giác ABC vuông tại A (AB<AC).Trên cạnh AC lấy điểm D sao cho AD=AB;Gọi M là trung điểm của BD,Tia AM cắt BC tại K.
a,Chứng Minh: tam giác AMB = tam giác AMD
b,Chứng Minh:BK=DK
c,Trên tia đối của tia BA lấy điểm E sao cho BE=CD.Chứng minh 3 điểm D,K,E thẳng hàng
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC.
a) Trên tia đối của tia BA lấy điểm D và trên tia đối của tia CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HAD = tam giác HAE
b) Gọi I là trung điểm của DE. Chứng mính 3 điểm A;H;I thẳng hàng
Cho tam giác ABC có 3 góc nhọn. GỌi I là trung điểm của cạnh BC. Trên tia đối của tia IA, lấy điểm D sao cho IA=ID.
a) Chứng minh: Tam giác AIC= Tam giác DIB
b) Chứng minh: AC//BD và AC=BD
c) Treen tia đối tia AB lấy điểm G sao cho BA=BG. Trên tia đối tia AC, lấy điểm E sao cho CA=CE. Chứng minh rằng BC // GE
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cho tam giác ABC Gọi E là trung điểm của AB, F là trung điểm của AC. Trên tia CE kéo dài lấy điểm M sao cho EC=EM, trên tia BF kéo dài lấy điểm N sao cho BF=FN
a) chứng minh tam giác AFBC= tam giác FAN và AN=BC
b) chứng minh AN//BC
c) chứng minh AM=AN
d) chứng minh M;A;N thẳng hàng
Cho tâm giác ABC có AB=5cm AC=7cm BC=9cm. Kéo dài AB lấy Đ sao cho BD=BA. Kéo dài AC lấy E sao cho CE=CA. Kéo dài đường trung tuyến AM của tam giác ABC lấy MI=MA. Chứng minh: a) Tính độ dài các cạnh cửa tâm giác ADE b) DI//BC c) 3 điểm D I và E thẳng hàng