tim GTNN cua D=\(\frac{-15.\left|x+7\right|-68}{3.\left|x+7\right|+12}\)
Tìm giá trị nhỏ nhất của :
a) A = \(21\cdot\left|4x+6\right|+\frac{33}{3\left|4x+6\right|+5}\)b) B = \(\frac{6\left|y+5\right|+14}{2\left|y+5\right|+14}\)c) C = \(\frac{-15\left|x+7\right|-68}{3\left|x+7\right|+12}\)a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
Tìm giá trị nhỏ nhất của biểu thức
\(A=5+\frac{-8}{4\left|5x+7\right|+24}\) \(c=\frac{15}{12}-\frac{28}{3\left|x-3y\right|+\left|2x+1\right|+35}\)
\(B=\frac{6\left|y+5\right|+14}{2\left|y+5\right|+14}\) \(C=\frac{-15\left|x+7\right|-68}{3\left|x+7\right|+12}\)
Các bạn làm đc câu nào thì làm nhé ai đúng mk se tik
Pk tìm GTLN chứ
Ta có: \(\left|5x+7\right|\ge0\)
\(\Rightarrow4\left|5x+7\right|\ge0\)
\(\Rightarrow4\left|5x+7\right|+24\ge24\)
\(\Rightarrow\frac{-8}{4\left|5x+7\right|+24}\le\frac{-1}{3}\)
\(\Rightarrow5+\frac{-8}{4\left|5x+7\right|+24}\le\frac{14}{3}\)
Vậy Amax\(=\frac{14}{3}\Leftrightarrow5x+7=0\Leftrightarrow x=\frac{-7}{5}\)
ko ghi lại đề
\(C=\frac{-15|x+7|}{3|x+7|}\)
\(C=\frac{-15}{3}+\frac{-68}{12}\)
\(C=\frac{-15}{3}+\frac{-17}{3}\)
\(C=\frac{-32}{3}\)
Vì \(\hept{\begin{cases}3\left|x-3y\right|\ge0\\\left|2x+1\right|\ge0\end{cases}}\)
\(\Rightarrow3\left|x-3y\right|+\left|2x+1\right|+35\ge35\)
\(\Rightarrow\frac{28}{3\left|x-3y\right|+\left|2x+1\right|}\le\frac{4}{5}\)
\(\Rightarrow-\frac{28}{3\left|x-3y\right|+\left|2x+1\right|}\ge-\frac{4}{5}\)
\(\Rightarrow\frac{15}{12}-\frac{28}{3\left|x-3y\right|+\left|2x+1\right|}\ge\frac{9}{20}\)
Vậy \(C_{min}=\frac{9}{20}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{-1}{6}\end{cases}}\)
Tim GTNN cua: \(A=\frac{\left(x+a\right)\left(x+b\right)}{x}\)
Chỉ tìm được với điều kiện x;a;b dương, còn bất kì thì chắc là chịu
\(3,2.\frac{15}{16}-\left(75\%+\frac{2}{7}\right):\left(-1\frac{1}{28}\right)\)
\(\left(0,25+12,5-\frac{5}{16}\right):\left[12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right]\)
\(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(14,5-\frac{8}{9}:\left(35-34\frac{8}{9}\right).\frac{9}{8}\)
\(1\frac{1}{15}-\left(\frac{1}{15}+\frac{4}{9}:\frac{-2}{3}-\frac{28}{16}.\frac{6}{35}\right)-\frac{3}{10}\)
Tìm x
\(\left(4,5-2x\right)\left(-3\frac{2}{3}\right)=\frac{11}{15}\)
\(\backslash34-x\backslash=\left(-3\right)^4\)
\(\left(4x^2-1\right)\left(\text{\x}\backslash-\frac{2}{3}\right)=0\)
\(\frac{3}{5}x-\frac{1}{2}\)\(x=\frac{-7}{20}\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
nhớ làm giúp mình nhá mai mình phải đi học r :<
\(\left|x\right|-5\frac{3}{7}\left|x\right|-\frac{3}{4}=2\left|x\right|+\left(-\frac{8}{7}\right)\)
Tim x
khi x>0, ta có
x - 38/7*x - 3/4 = 2*x + (-8/7)
-45/7*x=-11/28
x=-11/180( ko thoả )
khi x<0 có
-x -38/7x - 3/4 = -2x -8/7
bạn tự giải nhé rồi ktra dđiều kiện nhé !
Tim cac so nguyen x,y thoa man:
\(\left|x-7\right|+\left|3-x\right|=\frac{12}{\left|y+1\right|+3}\)
Cũng dễ
Bạn chỉ cần xét từng trường hợp thôi
BT1: Tinh
\(\frac{7}{8}.\left(\frac{2}{12}+\frac{4}{10}\right)\)
\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2+\sqrt{4}\)
BT2: Tim x
\(2.x-\frac{5}{4}=\frac{20}{15}\)
\(\left(x+\frac{1}{3}\right)^3=\left(\frac{-1}{8}\right)\)
\(\frac{7}{8}.(\frac{2}{12}+\frac{4}{10})\)
\(\Rightarrow\frac{7}{8}.(\frac{10+24}{60})\)
\(\Rightarrow\frac{7}{8}.\frac{34}{60}=\frac{238}{480}\)
bt2
\(2.x-\frac{5}{4}=\frac{20}{15}\)
\(\Leftrightarrow2x=\frac{20}{15}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{80+75}{60}\)
\(\Leftrightarrow2x=2,5\)
\(\Leftrightarrow x=1,25\)
.7/8.(1/6+2/5)=7/8.17/30=119/240
3/2-5/6:1/4+\(\sqrt{4}\)=3/2-10/3+2=1/6
2x=20/15+5/4
2x=31/12
x=31/12:2
x=31/24
ko bt nha thông cảm
\(\frac{2x+9}{\left(x+1\right)\left(x+8\right)}-\frac{2x+15}{\left(x+8\right)\left(x+7\right)}+\frac{2x+10}{\left(x+7\right)\left(x+3\right)}=\frac{4}{3}\)
(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3
(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3
1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3
1/(x+1)+1/(x+3)=4/3
(x+3+x+1)/(x+3)(x+1)=4/3
(2x+4)/(x+3)(x+1)=4/3
=>(2x+4).3=(x+3)(x+1).4
6(x+2)=4(x+3)(x+1)
3(x+2)=2(x+3)(x+1)
3x+6=2(x^2+4x+3)
3x+6=2x^2+8x+6
2x^2+8x+6-3x-6=0
2x^2+5x=0
x(2x+5)=0
=> x=0 hoac 2x+5=0
=> x=0 hoac x=-5/2