2. Tìm GTLN của biểu thức:
a)A= 4x-x2+3
b)B=x-x2
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
tìm GTNN của biểu thức :
B=2x2 40x-15
C=x2-4xy+5y2-4y+28
Tìm GTLN của biểu thức :
D= - x2+4x+3
E=x-x2
F=\(\dfrac{5}{x^{2+2x+5}}\)
Mọi người ơi, giúp mình bài này với, cảm ơn mọi người nhiều nha !!!
bài 1: Tìm GTNN của các biểu thức sau:
a) A=x2−3x+4A=x2−3x+4
b) B=2x2−4x+1B=2x2−4x+1
c) C=4x2−4xC=4x2−4x
Bài 2: Tìm GTLN của các biểu thức sau:
a) A=−x−4x+2A=−x−4x+2
b) B=(x+4)(2−x)B=(x+4)(2−x)
Bài 3: Tính giá trị của các biểu thức sau:
a) A=9x2+42x+49A=9x2+42x+49 với x=1x=1
b) B=(x+y)3−x2+2xy−y2B=(x+y)3−x2+2xy−y2 với x−y=−5
tìm GTLN của biểu thức
a) A= 5x-x2
b) B=x-x2
c) C=4x-x2+3
em mong mọi người giúp đỡ
a) Ta có: \(A=5x-x^2\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)
\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{5}{2}\right)^2=0\Leftrightarrow x-\frac{5}{2}=0\)\(\Leftrightarrow x=\frac{5}{2}\)
Vậy: GTLN của biểu thức \(A=5x-x^2\) là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=x-x^2\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(B=x-x^2\)là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)
c) Ta có: \(C=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị lớn nhất của biểu thức \(C=4x-x^2+3\) là 7 khi x=2
1.Viết biểu thúc sau dưới dạng bình phương của một tổng: 2xy2+x2y4+1 2 Tính giá trị của biểu thức sau: a) x2-y2 tại x= 87 và y=13 b)x3-3x2+3x-1 tại x=101 c) x3+9x2+27x+27 tại x=97 3. Chứng minh rằng: a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)=2a3 b) a3+b3=(a+b)[(a-b)2+ab] 4.Chứng tỏ rằng: a) x2-6x+10>0 với mọi x b) 4x-x2-5<0 với mọi x 5. Tìm giá trị nhỏ nhất của đa thức: a) P=x2-2x+5 b)Q=2x2-6x c) M=x2+y2-x+6y+10 6.Tìm giá trị lớn nhất của đa thức: a) A=4x-x2+3 b) B=x-x2 c)N=2x-2x2-5 7.Rút gọn các biểu thức sau: a)A=(3x+1)2-2(3x+1)(3x+5)+(3x+5)2 b)B=(a+b+c)2+(a-b+c)2-2(b-c)2 c)D= (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2 8. a) Tìm GTNN của A= 4/5+│2x-3│ b) Tìm GTLN của B=1/2(x-1)2+3 9.Cho a+b+c=0 C/m: a3+b3+c3= 3abc Câu hỏi tương tự Đọc thêm
MK KO BT MK MỚI HO C LỚP 6
AI HỌC LỚP 6 CHO MK XIN
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Cho biểu thức M= ( x2/ x3-4x + 6/ 6-3x + 1/ x+2) : (x-2 + 10-x2/ x+2)
a. Rút gọn M
b. Tìm các gtri nguyên của x để M đạt GTLN
c. Tìm x để M= 3x
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) A = x2 + 3x + 4
b) B = 2x2 - x + 1
c) C = 5x - x2 + 4
d) D = x2 + 5y2 - 2xy + 4y + 3
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5