\(\frac{6x}{x^2-3x-5}+\frac{3x}{x^2+3-5}=-1\)
Tìm x:
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)
\(\Leftrightarrow7-6x=3x-5\)
\(\Leftrightarrow7+5=3x+6x\)
\(\Leftrightarrow12=9x\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
Giải các phương trình.
a) \(\frac{2.\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3.\left(2x+1\right)}{4}\)b) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
c) 3x-5=7
d) \(\frac{5}{x+3}=\frac{3}{x-1}\)
e) -2x+14=0
f) 2x.(x-3)+5.(x-3)=0
g) (x2-4)-(x-2).(3-2x)=0
h) 2x3+6x2=x2+3x
a,\(\frac{1}{2x-2}-\frac{x-1}{3x^2+6x+3}\)
b,\(\frac{4}{x^2-1}+\frac{1}{x+1}+\frac{-2}{x-1}\)
c,\(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
ai jup em vs
Đề bài yêu cầu gì bạn?
Q= \(\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^4-24}{x^9+6x^6+9x^3}.\frac{2x}{3x^3+6}\right)\)
giải bất phương trình và phương trình;
A. 3x+2(x+1)=6x-7
B.\(\frac{x+3}{5}< \frac{5-x}{3}\)
C. \(\frac{5}{x+1}+\frac{2x}{x^2-3x-4}=\frac{2}{x-4}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
R/g\(\left[\left(x^3-1\right)-\frac{7-x^3}{3+x^3}.\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
Rút gọn : \(\left[\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
giải phương trình
\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)
\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)
\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)
\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow3x-1=-5\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)
\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là\(x=-1\)
giải các phương trình
a, \(\frac{2}{x-1}+\frac{5}{x+2}=\frac{13}{x^2+x-2}\)
b, \(\frac{2x-1}{x-3}=\frac{6x-1}{3x+2}\)
c, \(|-3x|=x-10\)
d, \(|3x-1|-x+2=0\)
e, \(|x^2-3x+5|=3x+x^2+1\)
\(\frac{2}{x-1}+\frac{5}{x+2}=\frac{13}{x^2+x-2}.\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{5\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow\frac{2x+4}{x^2+x-2}+\frac{5x-5}{x^2+x-2}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow\frac{7x-1}{x^2+x-2}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow7x-1=13\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
\(\frac{2x-1}{x-3}=\frac{6x-1}{3x+2}\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=\left(x-3\right)\left(6x-1\right)\)
\(\Leftrightarrow6x^2+4x-3x-2=6x^2-x-18x+3\)
\(\Leftrightarrow4x-3x+x+18x=3+2\)
\(\Leftrightarrow20x=5\)
\(\Leftrightarrow x=\frac{1}{4}\)
\(\left|-3x\right|=x-10\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=x-10\\-3x=10-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-3x-x=-10\\-3x+x=10\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\-2x=10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-5\end{cases}}}}}\)
\(\left|3x-1\right|-x+2=0\)
\(\Leftrightarrow\left|3x-1\right|=x-2\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=x-2\\3x-1=2-x\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-x=-2+1\\3x+x=2+1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\4x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{3}{4}\end{cases}}}}}\)
\(\left|x^2-3x+5\right|=3x+x^2+1\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+5=3x+x^2+1\\x^2-3x+5=-3x-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(-3x-3x\right)=1-5\\\left(x^2+x^2\right)=-1-5\end{cases}\Leftrightarrow\orbr{\begin{cases}-6x=-4\\2x^2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x^2=-3\text{(vô lí)}\end{cases}}}}}\)