Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Do Dinh Luyen
Xem chi tiết
Van Anh Tran
Xem chi tiết
Linh Nguyễn
18 tháng 9 2017 lúc 5:53

\(A=x^2-2x+50\)

\(A=x^2-2x+1+49\)

\(A=\left(x-1\right)^2+49\ge49\)

Dấu "=" xảy ra khi:

\(x=1\)

\(B=12x-x^2\)

\(B=-x^2+12x\)

\(B=-x^2+12x-36+36\)

\(B=-\left(x^2-12x+36\right)+36\)

\(B=-\left(x-6\right)^2+36\le36\)

Dấu "=" xảy ra khi:

\(x=6\)

\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(C=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(C=\left[x\left(x-6\right)+1\left(x-6\right)\right]\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(C=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)\)

\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

\(C=\left(x^2-5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi:

\(x^2-5x=0\)

\(\Rightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Nguyễn Phan Anh
Xem chi tiết
Trên con đường thành côn...
3 tháng 8 2021 lúc 7:53

undefined

Tường vy Trần
Xem chi tiết
Tường vy Trần
2 tháng 1 2022 lúc 17:39

Giúp mk vs

 

Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 21:24

a: \(=x^3-2x^5\)

e: \(=x^4+2x^3-x^2-2x\)

Đã Ẩn
Xem chi tiết
Thu Thao
12 tháng 12 2020 lúc 16:29

Bạn chú ý đăng lẻ câu hỏi! 1/

a/ \(=x^3-2x^5\)

b/\(=5x^2+5-x^3-x\)

c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)

d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)

e/ \(=x^4-x^2+2x^3-2x\)

f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)

Vũ Việt Hoàn
11 tháng 12 2024 lúc 21:24

cmm

 

Ngọc Tuệ Đình Trần
Xem chi tiết
nguyen khanh linh
Xem chi tiết
Bùi Minh Hải
4 tháng 8 2018 lúc 18:44

mày ngu vãi bài này mà không biết làm

_Guiltykamikk_
4 tháng 8 2018 lúc 18:46

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Mà  \(x^2-2y^2+z^2=44\)

\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2+\left(5k\right)^2=44\)

\(\Leftrightarrow4k^2-18k^2+25k^2=44\)

\(\Leftrightarrow k^2\left(4-18+25\right)=44\)

\(\Leftrightarrow k^2.11=44\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

+) Với  \(k=2\)thì  \(\hept{\begin{cases}x=2k=4\\y=3k=6\\z=5k=10\end{cases}}\)

+) Với  \(k=-2\)thì  \(\hept{\begin{cases}x=2k=-4\\y=3k=-6\\z=5k=-10\end{cases}}\)

Vậy ...

kiều minh quân
Xem chi tiết
Thanh Hoàng Thanh
24 tháng 2 2022 lúc 22:18

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

Thư Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 20:31

a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)

c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)

Đỗ Tuệ Lâm
4 tháng 1 2022 lúc 21:12

a,

\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b,

\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)

 

HAN
Xem chi tiết