tìm GTNN của \(A=\sqrt{x^2+x+1}+\)\(\sqrt{x^2-x+1}\)
Ai thức sớm thì giúp mình với ạ, mình cần gấp
Cho biểu thức:
\(Q=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a) Rút gọn Q
b) Tìm GTNN của Q
c) Tìm các số nguyên x để \(\frac{3Q}{\sqrt{x}}\) nhận giá trị nguyên
Giúp mk vs ạ, mình cần gấp
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
Cho x, y, z > 0. Tìm GTNN của biểu thức
A=\(\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}+\sqrt{\frac{2\sqrt{x}}{\sqrt{y}+\sqrt{z}}}\)
GIÚP MÌNH NHANH VỚI MÌNH CẦN GẤP
tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
MN giúp e với e cần rất gấp ạ
Cho biểu thức:
11/ Cho biểu thức:
\(P=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) rút gọn P
b) Tìm GTNN của biểu thức \(\frac{2}{P}+\sqrt{x}\)
giúp mk với, mk cần gấp ạ
đkxđ \(x\ne1;x\ge0\)
\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)
p=\(\left\{\frac{x\sqrt{x}+x+2}{x-1}-\frac{1}{\sqrt{x}+1}\right\}:\frac{1}{x\sqrt{x}-x}\)
1. Rút gọn biểu thức
2. tìm GTNN của P
giúp mình với :(( đang gấp
\(\left(\frac{x\sqrt{x}+x+2}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{x\sqrt{x}-x}\)
\(=\left(\frac{x\sqrt{x}+x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{x\sqrt{x}-x}{1}\)
\(=\frac{x\sqrt{x}+x+2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}-1\right)}{1}\)
\(=\frac{x\sqrt{x}+x-\sqrt{x}+3}{\sqrt{x}+1}.x\)
\(=\frac{x^2\sqrt{x}+x^2-x\sqrt{x}+3x}{\sqrt{x}+1}\)
\(........?!\)
Bài 1: tìm x để mỗi căn thức sau có nghĩa:
a)\(\sqrt{x^2+2x-2}\)
b)\(\sqrt{-x^2+6x-4}\)
Giúp mình với, mình cần gấp lắm ạ !!!
Cho x,y là 2 số dương thỏa mãn x2 + y2 = 8. Tìm GTNN của biểu thức:
M = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\)
M.n giúp mình với, cần gấp mai thi rồi.
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b
Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)
Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)
Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)
Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)
\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2
Cho biểu thức A=\((\sqrt{8-\sqrt{12}})(\sqrt{2}+\sqrt{3})\) B=\(\frac{1}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\)
a) Tính giá trị của biểu thức A
b) Tìm x để A=B
Mình đang cần gấp, mọi người giúp với ạ !
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
AI GIÚP MÌNH VỚI, MÌNH CẦN GẤP Ạ
Trả lời
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)
\(\Leftrightarrow x+1+x+2=3\)
\(\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy \(x=0\)
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\Leftrightarrow x=0\)