CMR: A = \(\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\) có giá trị là số tự nhiên
* Chưng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Đặt \(2008=a\)
\(\Leftrightarrow A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-\dfrac{2a\left(a+1\right)}{a+1}+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2009\left(đpcm\right)\)
Chứng minh rằng
A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là số tự nhiên
`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`
`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`
`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`
`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`
`=\sqrt{(2009-2008/2009)^2}+2008/2009`
`=|2009-2008/2009|+2008/2009`
`=2009-2008/2009+2008/2009`
`=2009` là 1 số tự nhiên
Cmr : A = \(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}+\dfrac{2008}{2009}}\) là số tự nhiên
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
1/ giải pt : \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
2/ cho B= \(\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\)có giá trị là 1 số tự nhiên
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)
Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)
Có \(a-b=4x+1-3x+2=x+3\)
=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)
=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))
<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)
Vậy pt (1) vô nghiệm
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))
Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)
=> \(a-b=4x+1-3x+2=x+3\)
Có \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)
=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)
<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)
<=> \(676-364x+49x^2=48x^2-20x-8\)
<=> \(676-364x+49x^2-48x^2+20x+8=0\)
<=> \(x^2-344x+684=0\)
<=> \(x^2-342x-2x+684=0\)
<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)
<=> (x-2)(x-342)=0
=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)
Vậy pt (1) có nghiệm x=2
Cmr:A=CĂN CỦA1+2OO82+20082/20092 +2008/2009 CÓ GIÁ TRỊ LÀ SỐ TỰ NHIÊN
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
Tính I=\(\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\)
Mời bạn đi nối này http://olm.vn/hoi-dap/question/189394.html