với 3 số dương x, y, z thỏa mãn x+y+z=1. CM 1-x^2/x+yz+1-y^2/y+xz+1-z^2/z+xy>=6
cho 3 số dương x y z thỏa mãn x+y+z=1 Chứng minh 3/(xy+yz+xz) + 2/(x^2+y^2+z^2) > 14
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
Cho x, y, z dương thỏa mãn \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=\dfrac{1}{4}\\x^2+xz+z^2=\dfrac{3}{4}\end{matrix}\right.\)
Tính B=x+y+z
Cho 3 số dương x,y,z thỏa mãn: xy + yz + xz = 671
\(CM:\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-xz+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Ta có:
\(VT=\dfrac{x^2}{x^3-xyz-2013x}+\dfrac{y^2}{y^3-xyz-2013y}+\dfrac{z^2}{z^3-xyz-2013z}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013.\left(z+y+z\right)}\)
\(VT=\dfrac{\left(x+y+x\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right).\left(xy+yz+xz\right)-xyz\right]}\)
\(VT=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}\)
\(VT=\dfrac{1}{x+y+z}=VP\)
\(\Rightarrow\) Đpcm.
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Áp dụng BĐT Cô - si cho 3 bộ số không âm
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)
\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)
\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)
Mà \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)
Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
cho 3 số thực dương x,y,z thỏa mãn xyz=1 cmr xy/(x^3+y^3+xy0+yz/(y^3+z^3+yz)+xz/(x^3+z^3+xz)<=1
(\sqrt((x+yz)(y+xz)))/(xy+z)+(\sqrt((y+xz)(z+xy)))/(x+yz)+(\sqrt((x+yz)(z+xy)))/(y+xz)
Với x,y,z>0 thỏa mãn x+y+z=1
Cho 3 số dương x,y,z thỏa mãn: xyz=1 . Tính giá trị biểu thức :
\(M=\frac{x+2xy+1}{x+xy+xz+z}+\frac{y+2yz+1}{y+yz+xy+1}+\frac{z+2xz+1}{z+xz+yz+1}\)
Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)
Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)
=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)
Cho các số dương x,y,z thỏa mãn điều kiện xy + yz + xz =671
Cmr \(\frac{x}{x^2-yz-2013}+\frac{y}{y^2-xz-2013}+\frac{z}{z^2-yx-2013}\ge\frac{1}{x+y+z}\)