Giải phương trình nghiệm nguyên
\(5x^2+5y^2+6xy-20x-20y+24=0\)
tìm nghiệm nguyên của phương trình 5x^2+5y^2+6xy-20x-20y+24=0
Giải phương trình nghiệm nguyên:
10y2 + x2 - 6xy - 5y + 6 =0
Giải phương trình nghiệm nguyên:
10y2 + x2 - 6xy - 5y + 6 =0
Giải phương trình nghiệm nguyên: 4x-5y-6xy-7=0
Ta có : \(4x-5y-6xy-7=0\)
\(\Leftrightarrow12x-15y-18xy-21=0\)
\(\Leftrightarrow\left(12x-18xy\right)-15y-21=0\)
\(\Leftrightarrow6x.\left(2-3y\right)+5.\left(2-3y\right)-31=0\)
\(\Leftrightarrow\left(2-3y\right)\left(6x+5\right)=31\)
Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}2-3y\inℤ\\6x+5\inℤ\end{cases}}\)
Nên \(2-3y,6x+5\) là cặp ước của \(31\).
Ta có bảng sau :
\(2-3y\) | \(-1\) | \(1\) | \(-31\) | \(31\) |
\(y\) | \(1\) | \(\frac{1}{3}\) | \(11\) | \(-\frac{29}{3}\) |
\(6x+5\) | \(-31\) | \(31\) | \(-1\) | \(1\) |
\(x\) | \(-6\) | \(\frac{13}{3}\) | \(-1\) | \(-\frac{2}{3}\) |
Đánh giá | Chọn | Loại | Chọn | Loại |
Vậy \(\left(x,y\right)\in\left\{\left(-6,1\right);\left(-1,11\right)\right\}\) thỏa mãn đề.
giải hpt : căn (2x^2+6xy+5y^2) +5=căn (2x^2+6xy+5y^2+14x+20y+5) và y^2-y+x^3=0
Mấy hệ pt của bạn đọc không ra bạn ơi. B ghi lại đi nhấp vô chỗ \(\sum\) để ghi công thức nhé
giải hpt: √(2x^2+6xy+5y^2)+5=√(2x^2+6xy+5y^2+14x+20y+5)
và y^2-y+x^3=0
giải hpt: \(\sqrt{2x^2+6xy+5y^2}+5=\sqrt{2x^2+6xy+5y^2+14x+20y+5}\)
và y^2-y+x^3=0
Tìm tất cả các nghiệm nguyên dương x,y thỏa mãn phương trình: \(5x^2+6xy+2y^2+2x+2y-73=0\)
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
tìm nghiệm nguyên của phương trình : \(20y^2-6xy=150-15x\)
giúp mình đi ạ , mình rất cần ạ
PT
\(\Leftrightarrow20y^2-150=3x\left(2y-5\right)\)
\(\Leftrightarrow3x=\frac{20y^2-150}{2y-5}\)
De \(x\in Z\Rightarrow\frac{20y^2-150}{2y-5}\in Z\)
Dat \(M=\frac{20y^2-150}{2y-5}=5\left(2y+5\right)-\frac{25}{2y-5}\)
De \(3x=M=10y+25-\frac{25}{2y-5}\in Z\Rightarrow\frac{25}{2y-5}\in Z\Rightarrow2y-5\in\left\{-5;-1;1;5\right\}\)
Ta tim duoc
\(y_1=0;y_2=2;y_3=3;y_4=5\)
\(\Rightarrow x_1=x_3=30;x_2=70;x_4=70\)