cho tứ giác ABCD có 2 đg chéo AC và BD vuông góc với nhau . gọi M,N,P,Q lần lượt là trung điểm AB, BC, CD , DA
1) tính số đo NMQ
2)C/m tứ giác MNPQ là hình chữ nhật
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. C/minh tứ giác MNPQ là hình chữ nhật
Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)
=>MQ là đường trung bình của tam giác ABD
=>MQ // BD và MQ = 1/2BD (1)
CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)
Từ (1) và (2) => MQ // NP và MQ = NP
=> MNPQ là hình bình hành (3)
Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)
=> MN là đg trung bình của t/g ABC
=> MN // AC
Mà AC _|_ BD (gt)
=> MN _|_ BD
Mà NP // BD (cmt)
=> MN _|_ NP (4)
Từ (3) và (4) => MNPQ là hình chữ nhật
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh tứ giác MNPQ là hình chữ nhật.
Bạn nào biết làm thì giúp mình nhé! Thanks nhiều!
Câu hỏi của Nàng tiên cá - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Cho tứ giác ABCD.Hai đường chéo AC và BD vuông góc với nhau. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD và DA a) Tứ giác MNPQ là hình gì? vì sao? b) Để MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>MN vuông góc với NP
=>MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì MN=NP
=>AC=BD
Cho tứ giác ABCD . Hai đường chéo AC và BD vuông góc với nhau . Gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,BC,CD,DA .
a) Tứ giác MNPQ là hình gì?Vì sao ?
b) Để MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?
1. cho tứ giác ABCD có 2 đường chéo AC và BD vuông với nhau. Gọi M,N,P,Q lần lượt là trung điểm củaAB,BC,CD,DA
a, tứ giác MNDQ là hình gì? vì sao?
b, tức giác ABCD thêm điều kiện gì để tứ giác MNPQ là hình vuông
c, biết : AC= 6 cm, BD= 8 cm. tính diện tích tứ giác MNPQ
Cho tứ giác ABCD. Hai đường chéo AC và BD vuông góc với nhau. Gọi M,N,P,Q lần lượt là trung điểmcác cạnh AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì? Vì sao?
b) để MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau.Gọi M , N , Q lần lượt là trung điểm của các cạnh AB,BC,CD và DA.
a) tứ giác MNPQ là hình gì?Vì sao?
b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần điều kiện gì?
c) Cho AC = 6cm , BD = 8cm .Hãy tính diện tích tứ giác MNPQ
tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành
mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP
tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)
b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm
QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm
Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm
Cho tứ giác ABCD .Hai đường chéo AC và BD vuông góc với nhau .Gọi M,N,P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA
a, Tứ giác MNPQ là hình gì? Vì sao ?
b,Để MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì ?
Mk ko biết làm bài này khó quá trời
a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành
mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP
tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)
b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
Cho tứ giác ABC có hai đường chéo AC và BD vuông góc với nhau. Gọi M;N;P;Q lần lượt là trung điểm của AB;BC;CD;DA. Chứng minh rằng tứ giác MNPQ là hình bình hành.
Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của BC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác ADC có:
+ Q là trung điểm của DA (gt).
+ P là trung điểm của CD (gt).
\(\Rightarrow\) QP là đường trung bình.
\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)
Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.
Xét tứ giác MNPQ:
+ MN // QP (cmt).
+ MN = QP (cmt).
\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi M,N,PQ lần lượt là các trung điểm của các cạnh AB,BC,DA,CM.chứng mình:
A) MNPQ là hình bình hành.
B) MNPQ là hình chữ nhật.
mk chứng minh luôn câu a và câu b thánh 1 câu