phan tích đa thức thanh nhan tử
\(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
phan tích đa thúc thanh nhan tử
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)(1)
Đặt \(x^2+3x+1=t\)thay vào (1) ta được :
\(\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)Thay \(t=x^2+3x+1\)ta được:
\(\left(x^2+3x+1\right)^2\)
\(=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+1\right)^2\)
\(=\left[\left(x+\frac{3}{2}\right)-\frac{5}{4}\right]^2\)
\(=\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^2\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^2\)
phan tích đa thức thanh nhan tử
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
\(=x^4+x^3+x^2+3x^3+3x^2+3x+x^2+x+1+x^2\)
\(=x^4+4x^3+6x^2+4x+1\)
\(=\left(x+1\right)^4\)
Bài 1 : Phân tích đa thức thành nhân tử
\(a,5x\left(x-2y\right)+2\left(2y-x\right)^2\)
\(b,7x\left(y-4\right)^2-\left(4-x\right)^3\)
\(c,\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
Phân tích các đa thức sau thành nhân tử
a)\(5x\left(x-2y\right)+2\left(2y-x\right)^2\)
b)\(7x\left(y-4\right)^2-\left(4-y\right)^3\)
c)\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
Câu 9 (1,5 điểm). Phân tích các đa thức sau thành nhân tử:
a) $5\left( x+2y \right)-15x\left( x+2y \right)$.
b) $4{{x}^{2}}-12x+9$.
c) ${{(3x-2)}^{3}}-3\left( x-4 \right)\left( x+4 \right)+{{(x-3)}^{3}}-\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)$.
a) \(5\left(x+2y\right)-15x\left(x+2y\right)=\left(x+2y\right)\left(5-15x\right)\\ =5\left(x+2y\right)\left(1-3x\right)\)
b) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2\\=\left(2x-3\right)^2\)
c) \(\left(3x-2\right)^3-3\left(x-4\right)\left(x+4\right)+\left(x-3\right)^3-\left(x+1\right)\left(x^2-x+1\right)\\ =27x^3-54x^2+18x-8-3\left(x^2-16\right)+x^3-9x^2+27x-27-\left(x^3+1\right)\\=27x^3-54x^2+18x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-57x^2+36x+12\\ =3\left(3x^3-19x^2+12x+4\right)\)
c) \(27x^3-54x^2+36x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-66x^2+63x+12\\=3\left(9x^3-22x^2+21x+4\right)\)
a, 5( x + 2y )-15x(x + 2y ).
= ( x + 2y ).( 5 -15x )
b, 4x2 - 12x + 9
= ( 2x - 3 )2
Phân tích đa thức thành nhân tử:
1) A = \(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
2) B = \(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
3) C = \(\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2\)
\(1,\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4=\left(x+2y-3-2\right)^2=\left(x+2y-5\right)^2\)
\(2,\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\text{[}\left(x-y\right)^2+x-y+1\text{]}-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\left(x^2+y^2+x-y+1-3x+3y\right)=\left(x-y-1\right)\left(x^2+y^2-2x+2y+1\right)\)
\(3,\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2=\left(x^2+y^2-17\right)-\left(2xy-8\right)^2=\left(x^2-2xy+y^2-9\right)\left(x^2+y^2+2xy-25\right)=\text{[}\left(x-y\right)^2-3^2\text{]}\text{[}\left(x+y\right)^2-5^2\text{]}=\left(x-y+3\right)\left(x-y-3\right)\left(x+y+5\right)\left(x+y-5\right)\)