Cho tam giác ABC nhọn có AB>AC. Kẻ các đường cao BD,CE. Lấy điểm F thuộc AB sao cho AF=AC. Kẻ FI vuông góc ở I.
a) so sánh FI và CE
b) kẻ FH vuông góc BD ở G. Chứng minh FI=HD
c) chứng minh AB-AC>BD-CE.
Cho tam giác ABC nhọn có AB>AC. Kẻ đường cao BD và CE. Lấy F thuộc AB sao cho AF=AC. Kẻ FI vuông góc với AC tại I.
a) So sánh: FI và CE
b) Kẻ FH vuông góc với BD ở H. C/m FI=HD
c) C/m AB-AC>BD-CE
Mọi người có thể giúp mình bài hình sau đc không ạ
Bài1: Cho tam giác nhọn ABC có BD vuông góc với AC tại D, CE vuông góc với AB tại E. Lấy F thuộc AB sao cho AF=AC. FI vuông góc với AC tại I.
a) Chứng minh FI song song với CF
b) Kẻ FH vuông góc với BD tại H. Chứng minh FI bằng HD
c) Chứng minh AB-AC > BD-CE
Cho △nhọn ABC( AB < AC). Các đường cao BD và CE lấy F∈AB sao cho AE= AC. Kẻ KI⊥AC
a) So sánh FI và CE
b) Kẻ FH ⊥BD. Chứng minh FI= HD
c) Chứng minh AB- AC< BD- CE
Cho △nhọn ABC( AB < AC). Các đường cao BD và CE lấy F∈AB sao cho AE= AC. Kẻ KI⊥AC
a) So sánh FI và CE
b) Kẻ FH ⊥BD. Chứng minh FI= HD
c) Chứng minh AB- AC< BD- CE
Cho tam giác ABC nhọn(AB<AC) có hai đường cao BD và CE cắt nhau tại H
a. chứng minh tam giác ABD đồng dạng với tam giác ACE
b. chứng minh HD.HB=HE.HC
c.AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Trên tia đối tia AF lấy điểm N sao cho AN=AF.Gọi M là TRung điểm cạnh IC. chứng minh NI vuông góc vs FM
Cho tam giác ABC nhọn, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB, F thuộc AB. Qua E kẻ EG vuông góc với AC, G thuộc AC. Chứng minh: a) AD. AE = AB. AGAC. AF. b) FG // BC.
a: Ta có: EG\(\perp\)AC
BD\(\perp\)AC
Do đó: EG//BD
Xét ΔABD có EG//BD
nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)
=>\(AE\cdot AD=AB\cdot AG\)(1)
Ta có: DF\(\perp\)AB
CE\(\perp\)AB
Do đó: DF//CE
Xét ΔAEC có DF//CE
nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)
=>\(AD\cdot AE=AC\cdot AF\)(2)
Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)
b: AB*AG=AC*AF
=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
nên FG//BC
Cho tam giác ABC nhọn (AB<AC), đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm của BC. Từ B kẻ đường thẳng song song với CH, đường thẳng này cắt tia HI tại K. Chừng minh:
a) KC vuông góc với AC
b) Gọi F là trung điểm của AK. Chứng minh FI vuông góc với BC và FI=1/2 AH
cho tam giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H.
a) CM: HD.HB=HE.HC
b) AH cắt BC tại F. kẻ FI vuông góc với AC tại I. CM: IF/IC=FA/FC
a) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm của IC. chứng minh NI vuông góc với FM
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB( E thuộc AB)
a) Chứng minh BD=CE
b) Gọi I là giao điểm của BD và CE. Chứng minh tam giác IBC cân
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I