Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Trần Tuấn Hoàng
5 tháng 3 2022 lúc 10:23

a. -Xét △ABH có: AB//DM (gt)

\(\Rightarrow\dfrac{AH}{HM}=\dfrac{AB}{DM}\) (định lí Ta-let)

Mà \(DM=\dfrac{1}{2}CD\) (M là trung điểm CD).

\(\Rightarrow\dfrac{AH}{HM}=\dfrac{AB}{\dfrac{1}{2}CD}=\dfrac{2AB}{CD}\)

b. Sửa đề: C/m HK//AB.

-Xét △ABK có: AB//CM (gt)

\(\Rightarrow\dfrac{AK}{KC}=\dfrac{AB}{CM}\) (định lí Ta-let)

Mà \(CM=\dfrac{1}{2}CD\) (M là trung điểm CD).

\(\Rightarrow\dfrac{AK}{KC}=\dfrac{AB}{\dfrac{1}{2}CD}=\dfrac{2AB}{CD}\)

-Xét △ABM có: \(\dfrac{AH}{HM}=\dfrac{AK}{KC}\left(=\dfrac{2AB}{CD}\right)\)

\(\Rightarrow\)HK//AB.

c. -Xét △ABM có: HK//AB (cmt).

\(\Rightarrow\dfrac{AB}{HK}=\dfrac{AM}{HM}\) (định lí Ta-let).

\(\Rightarrow\dfrac{AB-HK}{HK}=\dfrac{AM-HM}{HM}\)

\(\Rightarrow\dfrac{AB}{HK}-1=\dfrac{AH}{HM}\)

Mà \(\dfrac{AH}{HM}=\dfrac{2AB}{CD}\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{HK}=\dfrac{2AB}{CD}\)

\(\Rightarrow\dfrac{a}{HK}=\dfrac{2a}{b}\)

\(\Rightarrow HK=\dfrac{b}{a}\)

 

 

Kshould VN
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:36

a: Xét tứ giác ABCM có 

AB//CM

AB=CM

Do đó: ABCM là hình bình hàn

Suy ra: AM//BC

Pham Thi Thuy Noy
Xem chi tiết
Nghĩa Dương
28 tháng 12 2020 lúc 21:29

dễ mà ,mình bỏ chữ vecto nha

IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND

=2IM+2IN+MA+MB+NC+ND

=0

Hồng Huệ
Xem chi tiết
Nguyễn Thị Diệu Thúy
Xem chi tiết
Nguyễn Đăng Nhân
3 tháng 7 2023 lúc 10:44

a) Xét 2 tam giác AMC và BMD có:

\(\widehat{C}=\widehat{D}\) (góc kề một đáy)

\(AC=BD\) (cạnh bên)

\(MC=MD\) (giả thiết)

\(\Rightarrow\Delta AMC=\Delta BMC\) (cạnh.góc.cạnh)

\(\Rightarrow AM=BM\)

b) Xét 2 tam giác NMA và NMB có:

\(NA=NB\) (giả thiết)

\(NM\): cạnh chung

\(MA=MB\) (chứng minh trên)

\(\Rightarrow\Delta NMA=\Delta NMB\)

\(\Rightarrow\widehat{MNA}=\widehat{MNB}\)

Mà 2 góc \(\widehat{MNA}=\widehat{MNB}\) là 2 góc kề bù, nên:

\(\widehat{MNA}=\widehat{MNB}=\dfrac{180^o}{2}=90^o\)

Vậy MN là đường cao:

 

 

Mai Nguyễn Bảo Ngọc
Xem chi tiết
Trân Trân
Xem chi tiết
THPHUONG
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 22:19

a: Xét ΔEAB và ΔECM có

\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)

\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)

Do đó: ΔEAB đồng dạng với ΔECM

=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)

b: Xét ΔFAB và ΔFMD có

\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)

\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)

Do đó: ΔFAB đồng dạng với ΔFMD

=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)

Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)

\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

mà MD=MC

nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

nên FE//AB

Ta có: FE//AB

AB//CD

Do đó: FE//CD

c: Xét ΔADM có HF//DM

nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)

Xét ΔBDM có FE//DM

nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

Xét ΔBMC có EG//MC

nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

và MC=MD

nên FE=EG

Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)

=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)

=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)

=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)

=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)

=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)

mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)

nên HF=FE

mà FE=EG

nên HF=FE=EG

Nguyễn Thanh Tịnh
Xem chi tiết
Lê Quốc Huy
22 tháng 6 2018 lúc 15:30

- Tốt lắm bạn hiền :v