cho a,b,c không âm , 0<c<1 tm a2+b2+c2=3
tìm min max của P=ab+bc+ca+3(a+b+c)
Cho a,b,c không âm, không có 2 số nào đồng thời bằng 0. Tìm GTNN của \(Q=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt[]{\dfrac{2c}{a+b}}\)
- Với \(ab=0\), vai trò như nhau, giả sử
\(b=0\Rightarrow Q=\dfrac{a}{c}+\sqrt{\dfrac{2c}{a}}=\dfrac{a}{c}+\dfrac{1}{2}\sqrt{\dfrac{2c}{a}}+\dfrac{1}{2}\sqrt{\dfrac{2c}{a}}\ge3\sqrt[3]{\dfrac{1}{2}}\)
- Với \(ab>0\)
\(Q=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{\left(a+b\right)^2}{2ab+c\left(a+b\right)}+\sqrt{\dfrac{2c}{a+b}}\)
\(\ge\dfrac{\left(a+b\right)^2}{\dfrac{\left(a+b\right)^2}{2}+c\left(a+b\right)}+\sqrt{\dfrac{2c}{a+b}}=\dfrac{2}{\dfrac{2c}{a+b}+1}+\sqrt{\dfrac{2c}{a+b}}\)
Đặt \(\sqrt{\dfrac{2c}{a+b}}=x>0\)
\(\Rightarrow Q\ge\dfrac{2}{x^2+1}+x=\dfrac{x^3+x+2}{x^2+1}=\dfrac{x^3-2x^2+x}{x^2+1}+2=\dfrac{x\left(x-1\right)^2}{x^2+1}+2\ge2\)
\(\Rightarrow Q_{min}=2\) khi \(x=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}c=0;a=b\\a=b=c\end{matrix}\right.\)
Cho đa thức: p(x)=ax^2+bx+c(a,b,c#0). Cho biết 2a+3b+6c=0
a) Tính a,b,c theo p(0), P(1/2), P(1)
b) CMR: p(0), p(1/2), p(1) không thể cùng âm hoặc cùng dương.
Cho đa thức: p(x)=ax^2+bx+c(a,b,c#0). CHo biết 2a+3b+6c=0
a) Tính a,b,c theo p(0), P(1/2), P(1)
b) CMR: p(0), p(1/2), p(1) không thể cùng âm hoặc cùng dương.
Cho a,b,c là các số thực không âm thỏa mãn: 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:
Q= a2(b-c)+b2(c-b)+c2(1-c)
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Cho M = (−2023). a
2
. b. Biết M là một số nguyên âm. Phát biểu nào sau đây là phát biểu
đúng?
A. b là số nguyên dương B. b là một số nguyên âm
C. b không xác định được dấu D. b = 0
Cho a,b,c là các số thực không âm thỏa mãn a+b>0,b+c>0,c+a>0/
Chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{9\sqrt{ab+bc+ca}}{a+b+c}\ge6\)
2) Tìm các số a; b; c không âm sao cho a + 3c = 8; a + 2b = 9 và tổng a + b+ c có giá trị lớn nhất.
Cho số hữu tỉ x= \(\frac{a-3}{2}\).Với giá trị nào của a thì
a) x là số dương
b) x là số âm
c) x không là dương cũng không là âm ( 0 )
a) Để x là số dương
=> a - 3 > 0
a > 3
Vậy để \(x=\frac{a-3}{2}\)là số dương thì a > 3
b) Để x là số âm
=> a - 3 < 0
=> a < 3
Vậy để \(x=\frac{a-3}{2}\)là số âm thì a < 3
c) Để x = 0
\(\Rightarrow\frac{a-3}{2}=0\)
=> a - 3 = 0
a = 3
Vậy để x không âm cũng không dương thì a = 3
cho f (x ) = ax2 + bx + c ( a, b,c khác 0 và a + 3b + 6c = 0
a, tìm a , b ,c theo f(0) , f ( 1 / 2 ) ,f ( - 1 )
b chứng minh f (0) , f( 1 / 2 ) , f( - 1) không thể cùng âm hoặc cungf dương
cho a,b,c không âm, 0<c<4, a2+b2+c2=3
tìm min mã của P= ab+bc+ca+3(a+b+c)