Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Hằng
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 10 2019 lúc 12:03

a/ \(\Leftrightarrow2x^2-\left(3y-6\right)x-2y^2-2y-1=0\) (1)

\(\Delta=\left(3y-6\right)^2+8\left(2y^2+2y+1\right)=\left(5y-2\right)^2+40\)

Để (1) có nghiệm nguyên thì \(\Delta\) là số chính phương

\(\Rightarrow\left(5y-2\right)^2+40=k^2\) với \(k\in Z\)

\(\Rightarrow k^2-\left(5y-2\right)^2=40\)

\(\Rightarrow\left(k+5y-2\right)\left(k-5y+2\right)=40\)

Do \(\left(k+5y-2\right)+\left(k-5y+2\right)=2k\) chẵn nên chúng cùng tính chẵn lẻ

Vậy ta chỉ cần xét các cặp ước cùng tính chẵn lẻ của 40 là (dài quá, bạn tự xét)

Nguyễn Việt Lâm
14 tháng 10 2019 lúc 12:06

b/ \(\Leftrightarrow2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do vế trái chẵn và không âm \(\Rightarrow\) vế phải chẵn và không âm

\(\Rightarrow y^2\) lẻ và \(y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)

\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+1\right)^2=18\)

\(\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)

Hảải Phongg
Xem chi tiết
Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Hảải Phongg
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Vũ Ngọc Duy Anh
Xem chi tiết
Nguyễn Linh Chi
30 tháng 5 2020 lúc 19:55

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.

Khách vãng lai đã xóa
hanhungquan
Xem chi tiết
tth_new
31 tháng 10 2018 lúc 8:45

a) \(2x+13y=156\) (1)

.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)

Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)

Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)

b)Biến đổi phương trình thành: \(2xy-4x=7-y\)

\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )

Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên

hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!

tth_new
31 tháng 10 2018 lúc 8:57

c) \(3xy+x-y=1\)

\(\Leftrightarrow9xy+3x-3y=3\)

\(\Leftrightarrow9xy+3x-3y-1=2\)

\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)

\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)

Sỹ Tiền
Xem chi tiết
Toru
23 tháng 8 2023 lúc 21:28

\(a,\dfrac{2}{3}xy^2.\dfrac{2}{3}xy=\dfrac{4}{9}x^2y^3\)

\(b,-\dfrac{1}{2}x^2y.2xy^2=-x^3y^3\)

\(c,8xy^3.2x^3y^2=16x^4y^5\)

\(d,-\dfrac{1}{4}x^2y^3.2x^3y^2=-\dfrac{1}{2}x^5y^5\)

\(e,4x^2y^4.\dfrac{1}{2}x^2y^3=2x^4y^7\)

\(f,-8xy.\dfrac{1}{4}x^2y=-2x^3y^2\)

\(Ayumu\)

Mai Thanh Hoàng
Xem chi tiết
Ngo Hiệu
Xem chi tiết
Thái Đào
Xem chi tiết
Thái Đào
Xem chi tiết