Giải phương trình nghiệm nguyên:
a, \(2x^2-3xy-2y^2+6x-2y=1\)
b, \(2x^2+4x=19-3y^2\)
Giải phương trình nghiệm nguyên:
a, \(2x^2-3xy-2y^2+6x-2y=1\)
b, \(2x^2+4x=19-3y^2\)
a/ \(\Leftrightarrow2x^2-\left(3y-6\right)x-2y^2-2y-1=0\) (1)
\(\Delta=\left(3y-6\right)^2+8\left(2y^2+2y+1\right)=\left(5y-2\right)^2+40\)
Để (1) có nghiệm nguyên thì \(\Delta\) là số chính phương
\(\Rightarrow\left(5y-2\right)^2+40=k^2\) với \(k\in Z\)
\(\Rightarrow k^2-\left(5y-2\right)^2=40\)
\(\Rightarrow\left(k+5y-2\right)\left(k-5y+2\right)=40\)
Do \(\left(k+5y-2\right)+\left(k-5y+2\right)=2k\) chẵn nên chúng cùng tính chẵn lẻ
Vậy ta chỉ cần xét các cặp ước cùng tính chẵn lẻ của 40 là (dài quá, bạn tự xét)
b/ \(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Do vế trái chẵn và không âm \(\Rightarrow\) vế phải chẵn và không âm
\(\Rightarrow y^2\) lẻ và \(y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+1\right)^2=18\)
\(\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải hệ phương trình:
\(\hept{\begin{cases}2+2x^2-2y^2+3xy-4x-3y=0\\\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\end{cases}}\)
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
Bài 1 Giải phương trình nghiệm nguyên sau :
a, 2x + 13y = 156
b, 2xy - 4x + y =7
c, 3xy + x - y =1
d, 2x^2 + 3xy - 2y^2 = 7
e, x^3 - y^3 =91
g, x^2 - xy = 6x -5y - 8
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
5) tính ....a)2/3xy^2.2/3xy b)-1/2x^2y.2xy^2 c)8xy^3.2x^3y^2 d)-1/4x^2y^3.2x^3y^2 e)4x^2y^4.1/2x^2y^3 f)-8xy.1/4x^2y
\(a,\dfrac{2}{3}xy^2.\dfrac{2}{3}xy=\dfrac{4}{9}x^2y^3\)
\(b,-\dfrac{1}{2}x^2y.2xy^2=-x^3y^3\)
\(c,8xy^3.2x^3y^2=16x^4y^5\)
\(d,-\dfrac{1}{4}x^2y^3.2x^3y^2=-\dfrac{1}{2}x^5y^5\)
\(e,4x^2y^4.\dfrac{1}{2}x^2y^3=2x^4y^7\)
\(f,-8xy.\dfrac{1}{4}x^2y=-2x^3y^2\)
\(Ayumu\)
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
giải phương trình nghiệm nguyên 2x^2-3xy-2y^2+6x-2y=1