\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
pt => \(x^2+10x+21=9\left(x+3\right)+4\left(x+7\right)+36-36\sqrt{x+3}-24\sqrt{x+7}\)
\(+12\sqrt{x^2+10x+21}\) ( bình phuownng hai vế)
=> \(x^2-3x-70=-36\sqrt{x+3}-24\sqrt{x+7}+12\left(3\sqrt{x+3}+2\sqrt{x+7}-6\right)\)
=> \(x^2-3x-70=-72\)
=> \(x^2-3x+2=0\)
=> \(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)( thỏa mãn điều kiện).
Thay x=1 vào phương trình ban đầu ta có: \(4\sqrt{2}=6+4\sqrt{2}-6\)( đúng) .
Thay x=2 vào phương trình ban đầu ta có: \(3\sqrt{5}=3\sqrt{5}+6-6\)( đúng)
Vậy x=1 và x=2 là ngiệm của phương trình ban đầu
giải pt: \(\sqrt{x^2+10x+21}=3\sqrt{x +3}+2\sqrt{x+7}-6\)
ta có pt
<=>\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}=6\)
đặt \(\sqrt{x+3}=a;\sqrt{x+7}=b\)
nên pt <=>\(ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)
\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)
đến đây thì dễ rồi
biêu thức dài dài trong căn pt thành nhân tử là \(\sqrt{\left(x+3\right)\left(x+7\right)}\)
xong rùi bn pt thành nhân tử sẽ có dạng \(\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\)
đến day bn làm tiếp nhé
Giải phương trình
\(\sqrt{x^2+10x+21}+6=3\sqrt{x+3}+2\sqrt{x+7}\)
pt\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-2\sqrt{x+7}+6-3\sqrt{x+3}=0 \)
nhầm .pt\(\sqrt{x+3}̣̣\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{array}\right.\)
bạn tự giải đc rồi nhé
giải phương trình :
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
ĐKXĐ tự tìm\(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+7}=b\end{matrix}\right.\)
\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)
\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Rightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Rightarrow....\)
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
1) ( \(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\) ).\(\sqrt{2}\)
2. Tìm điều kiện:
1)\(\sqrt{-10x}\) 6) \(\sqrt{\dfrac{3x+21}{-5}}\)
2) \(\sqrt{6-3x}\) 7) \(\sqrt{\left(x^2+1\right).2x}\)
3) \(\dfrac{-4}{\sqrt{4x+6}}\) 8) \(\sqrt{\left(-x^2-2\right)}.3x\)
4) \(\dfrac{5}{\sqrt{2x}}\) 9) \(\sqrt{\dfrac{1}{\left(x-1\right)^2}}\)
5) \(\sqrt{\dfrac{-1}{2x-6}}\)
hộ mk với tí nx pk nộp r ;-; help
Bài 1:
Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)
\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)
\(=6\sqrt{2}\cdot\sqrt{2}\)
=12
Bài 2:
1) ĐKXĐ: \(x\le0\)
2) ĐKXĐ: \(x\le2\)
3) ĐKXĐ: \(x>\dfrac{-3}{2}\)
4) ĐKXĐ: x>0
5) ĐKXĐ: x<3
giải pt
\(\sqrt{x^2+10x+21}-3\sqrt{x+3}+2\sqrt{x+7}=6\)
x>/ -3
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}+2\sqrt{x+7}-6=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)+2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}+2\right)=0\)
\(\Leftrightarrow\sqrt{x+7}-3=0\Rightarrow x+7=9\Rightarrow x=2\left(TM\right)\)
giải phương trình:
\(\sqrt{x^2+10x+21}+6=2\sqrt{x+2}+3\sqrt{x+3}\)
Sorry mình nới học lớp 6 thôi 3 năm sau thì mình sẽ giải cho bạn
Giải pt:
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
\(\frac{1}{1-\sqrt{1-x}}-\frac{1}{1+\sqrt{1-x}}=\frac{\sqrt{3}}{x}\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
a) ĐKXĐ: x\(\ge\)-3
PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\) \(\left(a,b\ge0\right)\)
PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)
TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)
TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)
Vậy tập nghiệm phương trình S={1; 2}