Cho \(a^3+b^3=2\) . Chmr: \(a+b\le2\)
Cho \(a^3+b^2=2\) . Chmr: \(a+b\le2\)
Cho \(a^2+b^2\le2\) Chứng minh \(a+b\le2\left(a+b\right)^3\)
Cho \(a^2+b^2\le2\) CMR \(a+b\le2\left(a+b\right)^3\)
vì a2 và b2 là 2 SCP nên chúng là STN
thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1
=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)
1. Cho a, b, c>0. Chm: \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
2. Cho a, b, c, d>0. Chmr: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, BĐT tương đương:
\(a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b\)
2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)
Dấu "=" xảy ra khi \(a=b=c=d\)
Cho các số thực dương a,b thỏa mãn \(\dfrac{a}{a^3+b}+\dfrac{b}{a+b^3}\ge1\). Chứng minh rằng:
\(a^2+b^2\le2\)
cho 3 số a,b,c sao cho \(0\le a\le2;0\le b\le2;0\le c\le2\)
và a+b+c=3. chứng minh rằng \(a^2+b^2+c^2\le5\)
Cho 3 số a, b, c sao cho :
\(0\le a\le2\); \(0\le b\le2\); \(0\le c\le2\) và a + b + c = 3.
Chứng minh rằng : \(a^2+b^2+c^2\le5\).
Cho a+b=2
CMR : \(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Áp dụng bất đẳng thức Holder, ta có:
\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)
<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)
Vì a+b=3
=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Dấu "=" xảy ra khi: a=b=1
=>ĐPCM
Cho a3+b3=2 . Chứng minh a + b \(\le2\)
Giả sử a + b > 2
<=> a > 2 - b
<=> a^3 > (2 - b)^3
<=> a^3 > 8 - 12b + 6b^2 - b^3
<=> a^3 + b^3 > 8 - 12b + 6b^2
<=> 2 > 8 - 12b + 6b^2
<=> 0 > 8 - 2 -12b + 6b^2
<=> 0 > 6 + 6b^2 -12b
<=> 0 > 1 - 2b + b^2 ( vô lí )
Vậy a + b \(\le\)2 ( dấu bằng xảy ra khi a=b=1)