Cho tam giác ABC , BC=a ,AC=b, AB=c. Cmr sin \(\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC , BC=a ,AC=b, AB=c. Cmr sin\(\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(Sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(sin\frac{\widehat{A}}{c}\le\frac{a}{b+c}\)
Kẻ phân giác AD, BK vuông góc với AD.
\(\sin\frac{\widehat{A}}{2}=\sin BAD\)
Xét tam giác AKB vuông tại K, ta có:
\(\sin BAD=\frac{BK}{AK}\left(1\right)\)
Xét tam giác BKD vuông tại K, ta có:
\(BK\Leftarrow BD\)thay vào (1)
\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)
Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)
\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)
\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)
các bạn giúp mình với:
cho a, b, c lần lượt là độ dài cạnh BC, AC, AB của tam giác ABC.
a) chứng minh \(\sin\frac{\widehat{A}}{2}\le\frac{a}{2\sqrt{bc}}\)
b) chứng minh \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
c) đường cao AD, BE cắt nhau ở h. chứng minh \(AH.HD\le\frac{BC^2}{4}\)
Cho a, b, c lần lượt là độ dài BC, AC, AB của tam giác ABC .
CMR : \(\sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\)
Kẽ phân giác AD của tam giác ABC, \(AD=l\)
Ta có:
\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)
Ta lại có:
\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)
\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)
bài bạn alibaba kiểu zì zì tam giác ban đầu đã vuông đâu
cho tam giac ABC co AB=c;AC=b;BC=a CMR
a/ sin\(\frac{A}{2}\le\frac{1}{8}\)
b/ \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
câu này có nhiều r
bạn chỉ cần kẻ 1 đường vuông góc là ra
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc với nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 Cho tam giác ABC có 3 góc nhọn có BC=a,CA=b,AB=c. cmr
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc vs nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 : Cho tam giác ABC có 3 góc nhọn có BC=a, CA=b, AB=c. CMR :
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ