Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(Sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(sin\frac{\widehat{A}}{c}\le\frac{a}{b+c}\)
Cho a, b, c lần lượt là độ dài BC, AC, AB của tam giác ABC .
CMR : \(\sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\)
cho tam giac ABC co AB=c;AC=b;BC=a CMR
a/ sin\(\frac{A}{2}\le\frac{1}{8}\)
b/ \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc vs nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 : Cho tam giác ABC có 3 góc nhọn có BC=a, CA=b, AB=c. CMR :
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Cho tam giác ABC, AB = c, AC = b, BC = a và b + c = 2a. C/m:
a) \(2\sin\widehat{A}=\sin\widehat{B}+\sin\widehat{C}\)
b) \(\frac{2}{h\widehat{A}}=\frac{1}{h\widehat{B}}+\frac{1}{h\widehat{C}}\)( hA, hB, hC lần lượt là các đường cao kẻ từ các đỉnh A, B, C )
Cho tam giác ABCcó AB=a,AC=b,BC=c
a,C/m:\(sin\frac{A}{2}\le\frac{a}{b+c}\)
b,C/m:\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Tam giác ABC nhọn, AC=b, AB=c, BC=a. CM: \(\sin\frac{A}{2}\le\frac{a}{b+c}\)