CM: \(n^6-2n^4+n^2⋮36\) với mọi số nguyên dương n
Chứng minh \(n^6-2n^4+n^2\) chia hết cho 36 với mọi n nguyên dương
CM:\(6^{2n}+19^n-2^{n+1}\)chia hết cho 17 với mọi số nguyên dương \(n\)
chứng minh rằng với mọi số nguyên n thì n^4+2n^3+2n^2+2n+1 không là số nguyên dương
giúp mình với nh ^^
\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)
Em xin mạn phép sửa đề: Chứng minh với mọi số nguyên n thì A (là cái biểu thức bên trên) luôn không âm.
Ta có: \(A=n^2\left(n+1\right)^2+\left(n+1\right)^2=\left(n+1\right)^2\left(n^2+1\right)\ge0\)
Suy ra đpcm.
cmr với mọi số nguyên dương
6^2n+19^n-2^n+1 chia hết cho17
6^(2n) +19^n-2^n+1 = 36^n + 19^n - 2^n +1
với n = 1 thì 36^n + 19^n - 2^n +1 ko chia hết cho 17
36 chia 17 dư 2 => 36^n chia 17 dư 2^n
19 chia 17 dư 2 => 19^n chia 17 dư 2^n
=> 36^n + 19^n - 2^n +1 chia 17 dư 2^n +1
vậy 36^n + 19^n - 2^n +1 chưa chắc đã chia hết cho 17 với mọi n
xem lại đề đi bạn
c) 16^n-15n-1 chia hết cho 225
n = 1 và n = 2 thì 16^n-15n-1 chia hết cho 225
giả sử điều trên đúng với n = k
ta cần chứng minh điều đó đúng với n = k+1
tức là với n = k+1 thì 16^(k+1)-15(k+1)-1 chia hết cho 225
thật vậy:
16^(k+1)-15(k+1) -1 = 16.16^k -16.15k - 16 + 15.15k = 16(16^k - 15k -1) + 225.k
ta có: 16^k-15k-1 chia hết cho 225 mà 225k chia hết cho 225
=>16^(k+1)-15(k+1)-1 chia hết cho 225
đpcm
CM
a)25^n+1-25^n chia hết cho 100 với mọi số tự nhiên n
b)n^2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
\(a,25^{n+1}-25^n=25^n\left(25-1\right)=25^{n-1}\cdot25\cdot24=25^{n-1}\cdot100\cdot6⋮100,\forall n\)
\(b,n^2\left(n-1\right)-2n\left(n-1\right)=n\left(n-1\right)\left(n-2\right)⋮6,\forall n\)(vì là 3 số nguyên liên tiếp)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.24=25^{n-1}.6.4.25=25^{n-1}.6.100⋮100\forall n\in N\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^2\left(n-1\right)-2n\left(n-1\right)⋮2.3=6\forall n\in Z\)
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6