Những câu hỏi liên quan
Cù Nhật Hoàng
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
Nguyễn Thu Hiền
22 tháng 11 2017 lúc 19:18

Mk cx đang định hỏi câu này

Bình luận (0)
Phan Văn Hiếu
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 9 2017 lúc 22:34

ta có:

\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)

tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

áp dụng bđt cô si ta có:

\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)

Bình luận (0)
Angela jolie
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 10 2019 lúc 13:43

\(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\) ; \(Q=\frac{1}{2}\left(ab+ac+bc\right)\)

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{1}{2}ab\)

Tương tự và cộng lại: \(P\ge a+b+c-Q\Rightarrow P+Q\ge a+b+c\)

Mặt khác \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow a+b+c\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\ge\frac{9}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Trương Tuệ Nga
Xem chi tiết
Đức Lộc Bùi
Xem chi tiết
Đặng Ngọc Quỳnh
19 tháng 2 2021 lúc 13:22

Ta có: \(\frac{1}{a+b}+\frac{1}{b+c}\ge2\sqrt{\frac{1}{a+b}\frac{1}{b+c}}=2\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{4}{a+2b+c}\)

Tương tự có: \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+2c+b}\)

\(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{b+2a+c}\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}\ge2\left(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\right)\)

Ta CM: \(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\). Thật vậy:

\(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\)\(\Leftrightarrow a^2+63\ge6b+12a+6c\)\(\Leftrightarrow2a^2+b^2+c^2+36-6b-12a-6c\ge0\)

\(\Leftrightarrow2\left(a-3\right)^2+\left(b-3\right)^2+\left(c-3\right)^2\ge0\) ( luôn đúng)

Dấu '=' xảy ra <=> a=b=c=3

Vậy \(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\ge\frac{6}{a^2+63}+\frac{6}{b^2+63}+\frac{6}{c^2+63}\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
tiểu an Phạm
Xem chi tiết
Trần Duy Khanh
Xem chi tiết
Thầy Giáo Toán
23 tháng 8 2015 lúc 0:09

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).

Bình luận (0)
hoahongtimuoi
Xem chi tiết
Vũ Tri Hải
22 tháng 5 2017 lúc 1:00

áp dụng BĐT Cauchy ta có \(\frac{a^3}{b}+b+1\ge3a\)

áp dụng tương tự với 2 số còn lại.

sau đó cộng các BĐT lại và rút gọn ta được P \(\ge\)2(a + b + c) - 3. (*)

mặt khác (a + b + c)2\(\ge\)3(ab + bc + ca) (tự chứng minh) kết hợp với giả thiết ta có

(a + b + c)2 + 3(a + b + c) \(\ge\)18. (1)

đặt t = a + b + c thì (1) là t2 + 3t - 18 \(\ge\)0

suy ra (t - 3)(t + 6) \(\ge\)0 hay t \(\ge\)3. thế vào (*) ta được P \(\ge\)3.

dấu bằng xảy ra khi a = b = c = 1.

vậy MinP = 3.

Bình luận (0)
Le Thi Khanh Huyen
22 tháng 5 2017 lúc 7:25

bạn ơi sao \(\frac{a^3}{b}+b+1\ge3a\)

Bình luận (0)
Thắng Nguyễn
22 tháng 5 2017 lúc 7:55

Trần Thùy Dung\(\frac{a^3}{b}+b+1\ge3\sqrt[3]{\frac{a^3}{b}\cdot b\cdot1}=3\sqrt[3]{a^3}=3a\)

Bình luận (0)