Nhanh nhanh mn ơi giúp mình nhé!+
Cho a, b, c là độ dài 3 cạnh của tam giác. Chứng minh rằng 4.b^2.c^2 - (a^2 + b^2 - c^2)^2>0
cho a,b,c là độ dài ba cạnh của tam giác chứng minh rằng :
\(\dfrac{a^2+2bc}{b^2+c^2}+\dfrac{b^2+2ac}{c^2+a^2}+\dfrac{c^2+2ab}{a^2+b^2}>3\)
mọi người giúp mình với
Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)
BĐT đã cho tương đương:
\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)
Vậy BĐT đã cho đúng
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh: a^2 - b^2 - c^2 + 2bc > 0
Mk cần gấp lắm! Giúp mk nhé!
Ta có\(a>b-c\)
Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0
\(\Rightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2>b^2-2bc+c^2\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)
Vậy \(a^2-b^2-c^2+2bc>0\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng A>0 với A=(a^2 + c^2 - b^2)^2 - 4a^2c^2
Sửa đề: cm A<0
\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)
\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)
\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0
a+c>b => a+c-b > 0
c+b>a=>a-(c+b)=a-c-b < 0
a+b>c => a+b-c > 0
Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)
Cho abc là 3 độ dài các cạnh của một tam giác có chu vi là 1 thỏa mãn a/1-a + b/1-b + c/1-c = 3/2.Chứng minh tam giác đó là tam giác đều.Giúp tớ nhanh nhé!Cảm ơn nhiều!
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
GIÚP MÌNH ZỚI!!
Cho a,b,c là độ dài ba cạnh của tam giác ABC. Chứng minh rằng: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)\(>0\)
bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)
\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác:
+a+c > b => a+c-b > 0
+b+c > a=>b+c-a > 0
+a+b+c và b+c+a hiển hiên đều lớn hơn 0
Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)
\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)
Cho tam giác ABC có độ dài 3 cạnh là BC= a, AC= b, AB= c thoả mãn a2+b2> 5c2. Chứng minh rằng góc C < 60 độ
Mấy tuần nữa là thi HSG rồi nên giúp mình nhé!
Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?
cho a,b,c là độ dài 3 cạnh của tam giác ABC. chứng minh rằng: 4b2c2 - (b2 + c2 - a2) > 0
giúp luôn nha!!
Cho A B C là độ dài 3 cạnh của 1 tam giác chứng minh a^2-b^2-c^2+2bc
Các bạn giúp mình với mình cần gấp
\(a^2-b^2-c^2+2bc\)
\(=a^2-\left(b-c\right)^2\)
\(=\left(a-b+c\right)\left(a+b-c\right)\)
chi a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng
\(a\left(b-c\right)^2+b\left(c-a\right) ^2+c\left(a-b\right)^2>a^2+b^2+c^2\)
tặng like cho người giải được nhanh nhất