Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Sơn
Xem chi tiết
Trần Nhã Trúc
Xem chi tiết
OoO Kún Chảnh OoO
21 tháng 8 2015 lúc 15:35

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Trần Minh Hoàng
23 tháng 10 2020 lúc 18:19

Áp dụng BĐT AM - GM ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\).

Đẳng thức xảy ra khi và chỉ khi x = y = z.

Vậy x = y = z.

Khách vãng lai đã xóa
Đặng Khánh Duy
Xem chi tiết
Jane Hanna Paul
Xem chi tiết
Luân Đào
8 tháng 5 2019 lúc 8:28

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

nguyen bao tram
Xem chi tiết
0o0 Nguyễn Văn Cừ 0o0
28 tháng 7 2017 lúc 15:19

toán lớp 8 đúng ko

x,y,z không âm, ta có: 
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và y 
=> x +y >= 2 căn(xy) (1) 
Áp dụng bất đẳng thức côsi cho 2 số không âm : zvà y 
=> y +z >= 2 căn(yz) (2) 
Áp dụng bất đẳng thức côsi cho 2 số không âm : x và z 
=> z +x >= 2 căn(xz) (3) 
nhân (1)(2)(3) => (x+y)(y+z)(z+x) >= 8 căn (x^2 y^2 z^2) 
<=>(x+y)(y+z)(z+x) >= 8xyz 
=> Điều phải chứng minh (theo bdt Côsi dấu "=" xảy ra khi x = y =z = 0 và 1)

       Đáp số :.........................

Song Lam Diệp
Xem chi tiết
Phùng Khánh Linh
31 tháng 3 2018 lúc 20:21

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

kuroba kaito
31 tháng 3 2018 lúc 15:30

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)

trần vũ hoàng phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 20:02

x+y>=2 căn xy

y+z>=2 căn yz

x+z>=2 căn xz

=>(x+y)(y+z)(x+z)>=8xyz