Tam giác MNP vuông tại P, phân giác AD .Biết sin M = 0.8.Tính các tỉ số lượng giác của góc M
Cho \(\Delta\)MNP vuông tại P. Biết sin M = 0,8. Hãy tính các tỉ số lượng giác của góc M.
Xét tam giác MNP vuông tại P có:
\(sinM=0,8\)
\(\Rightarrow\widehat{M}=53^0\)
\(\Rightarrow\left\{{}\begin{matrix}cosM=cos53^0=0,6\\tanM=tan53^0=1,3\\cotM=cot53^0=0,8\end{matrix}\right.\)
Bài 1 : cho tam giác ABC vuông tại A , AB = 6 , góc B = alpha, biết tan alpha bằng 5/2 . Tính : a, Cạnh AC b, Cạnh BC Bài 2 : Cho tam giác MNP vuông tại P . Hãy viết các tỉ số lượng giác của góc M và góc N . Biết góc M = 40° .
Bài 1:
a) Ta có:
\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)
\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+15^2=261\)
\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)
Bài 2:
\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)
Bài 1: Cho tam giác MNP vuông tại M, đường cao MK. Biết MN = \(\sqrt{5}\), NP = 3. Tính các tỉ số lượng giác của góc NMK.
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)
hay MP=2cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)
Xét ΔNMK vuông tại K có
\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)
\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)
\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)
\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)
1.Cho tan giác MNP vuông tại M kẻ MK vuông MP tại K biết KN=20,KP=15 tính MN,MK,MP
2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C
2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C
Cho tam giác MNP vuông tại m có MN = 3 cm góc b = 37 độ A giải tam giác vuông MNP ( số đo góc làm tròn đến độ) B: kẻ đường cao MH ( H€NP ) TÍNH MH Chứng minh góc nmh bằng góc P từ đó tính các tỉ số lượng góc của góc NMH
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
Cho tam giác MNP vuông tại M có MN= 3cm , MP= 4cm . Tia phân giác góc M cắt ND tại I, từ I kẻ IH vuông góc MP ( H thuộc MP) A, chứng minh tam giác MNP đồng dạng tam giác HIP B, tính tỉ số IN/IP độ dài IN, IP và tính IH C, tính tỉ số S mni/S hid
a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
cho tam giác MNP vuông tại N, biết rằng MP=10dm,MN=6cm.Tính tỉ số lượng giác của hai góc nhọn M và P
\(\sin\widehat{P}=\cos\widehat{M}=\dfrac{4}{5}\)
\(\cos\widehat{P}=\sin\widehat{M}=\dfrac{3}{5}\)
\(\tan\widehat{P}=\cot\widehat{M}=\dfrac{4}{3}\)
\(\tan\widehat{M}=\cot\widehat{P}=\dfrac{3}{4}\)
Bài 1: Cho tam giác MNP vuông tại N, biết rằng MP=10dm,MN=6cm.Tính tỉ số lượng giác của hai góc nhọn M và P Bài 2: Cho sinA=0,35.Tính tanA , cotA , cosA ?
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
tam giác abc vuông tại a, sinB=0.8
tính các tỉ số lượng giá của góc c