Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

Bài 1: Cho tam giác MNP vuông tại M, đường cao MK. Biết MN = \(\sqrt{5}\), NP = 3. Tính các tỉ số lượng giác của góc NMK.

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 22:56

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)

hay MP=2cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔNMK vuông tại K có 

\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)

\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)

\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)

\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)


Các câu hỏi tương tự
Quynh Existn
Xem chi tiết
kim hanie
Xem chi tiết
thùy linh
Xem chi tiết
Quynh Existn
Xem chi tiết
nguyễn Anh Tuấn
Xem chi tiết
Quynh Existn
Xem chi tiết
Huyền Trang
Xem chi tiết
Huyền Trang
Xem chi tiết
Ngọc Minh
Xem chi tiết