b: Ta có: \(\widehat{ABM}+\widehat{A}=90^0\)
\(\widehat{ACN}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABC có
BM là đường cao ứng với cạnh AC
CN là đường cao ứng với cạnh AB
BM cắt CN tại H
Do đó: AH\(\perp\)BC
b: Ta có: \(\widehat{ABM}+\widehat{A}=90^0\)
\(\widehat{ACN}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABC có
BM là đường cao ứng với cạnh AC
CN là đường cao ứng với cạnh AB
BM cắt CN tại H
Do đó: AH\(\perp\)BC
Bài 5. ChoΔ ABC đường cao BM và CN cắt nhau tại H .
a) Biết MA=6 cm;AB=10 cm. Tính các tỉ số lượng giác của góc A.
b) Chứng tỏ rằng góc ABM= góc ACN;AH vuông góc BC .
c) Gọi I ,J lần lượt là trung điểm của AH,BC . Chứng tỏ rằng IJ vuông góc MN .
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Bài 1. Giải tam giác vuông ABC, biết: BC = 10cm, góc C = 55 độ.
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm, AC = 12cm.
a) Tính AH.
b) Gọi M, N là hình chiếu của H trên AB, AC. Chứng minh rằng: MN2 = AM.AB.
c) Gọi K là điểm đối xứng của H qua AC. Tính diện tích tứ giác AHCK.