\(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{x-1}\)
GIẢI HỘ MÌNH VỚI Ạ!!
Giải các phương trình sau:
1. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
2. \(x^2+\sqrt{x+5}=5\)
3. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
4. \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Giúp mình với ạ, mình đang cần gấp. Thanks a lot <3 <3
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)với x > 0 rút gọn biểu thức ( cho em xin lời giải chi tiết ạ )
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)rút gọn biểu thức với x>0 ( cho em xin lời giải chi tiết ạ )
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
Ai biết giải hộ mình bài này đi mình cần gấp.
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
\(\Leftrightarrow2\sqrt{2}\left(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}\right)=7x^2-x+4\)
\(\Leftrightarrow\left[\left(3x^2-1\right)-2\sqrt{2}\sqrt{3x^2-1}+2\right]+\left[\left(x^2-x\right)-2\sqrt{2}\sqrt{x^2-x}+2\right]+\left[2x^2+2\sqrt{2}x\sqrt{x^2+1}+\left(x^2+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{x^2+1}+\sqrt{2}x\right)^2=0\)
Làm nốt
phương trình \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\) hộ mình vs ạ
giải hộ mình vs
Đúng làm trẻ trâu , ăn nói mất lịch sự
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
giải hộ mình với
\(x^3+\frac{x^3}{^{\left(x-1\right)^3}}+\frac{3x^2}{x-1}+2=0\)
\(\left(x+1\right)^2+\left(\frac{x+1}{x+2}\right)^2=8\)
\(4\left(x^3+\frac{1}{x^3}\right)=13\left(x+\frac{1}{x}\right)\)
giải phương trình bằng phương pháp đặt ẩn phụ:
ạ) \(2\sqrt{\left(-2x^2+5x+7\right)}=x^3-3x^2-x+12\)
b) \(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{\left(x-1\right)}\)