Tìm GTNN và GTLN của các biểu thức:
\(M=\sqrt{x+2}+\sqrt{6-x}\)
Tìm GTNN , GTLN của biểu thức :
A=\(\sqrt{x+4}+\sqrt{6-x}\)
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
\(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\). Tìm GTLN và GTNN của biểu thức
Tìm GTNN và GTLN của các biểu thức:
\(a,P=\sqrt{x}+\sqrt{2-x}\)
\(b,Q=\sqrt{x-2019}+\sqrt{2020-x}\)
Cho số thực x;y thỏa mãn \(x-\sqrt{x+6}=\sqrt{y+6}-y\)
Tìm GTLN, GTNN của biểu thức P=x+y
\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)
\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))
\(P_{max}=6\) khi \(x=y=3\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)
\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)
\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị
Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)
\(\Leftrightarrow\) P = x + y = \(\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)
Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:
\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24
\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0
\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\) -4 \(\le\) P \(\le\) 6
Vậy ...
Chúc bn học tốt!
\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\). Tìm GTLN và GTNN của biểu thức
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTLN và GTNN của biểu thức có dạng:
a) A= \(\sqrt{x-1}+\sqrt{4-x}\)
b) B= \(\sqrt{x+1}+\sqrt{6-x}\)
Mọi người giải giúp em nhé
Tính hợp lí
(2018/2017-2019/2018+2020/2019)×(1/2-
1/3-1/6)×(1/2+1/3+1/4+...+1/2020)
Em cảm ơn
Tìm Max trước thôi nhé, Min nghĩ sau:V
a) đk: \(1\le x\le4\)
Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)
=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)
=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)
Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2
b) đk: \(-1\le x\le6\)
Tương tự sử dụng BĐT Bunhiacopxki:
\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)
Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)
Min:
Áp dụng BĐT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\) . Dấu "=" xảy ra khi \(AB=0\):
\(A=\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(4-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
\(B=\sqrt{x+1}+\sqrt{6-x}\ge\sqrt{x+1+6-x}=\sqrt{7}\)
Dấu "=" xảy ra khi \(\left(x+1\right)\left(6-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.