tìm tập xác định của hs y=\(\frac{x+1}{\left(x-3\right)\sqrt{2x-1}}\)
Tìm tập xác định của hàm số :
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
tìm tập xác định của các hàm số :
a , \(y=\frac{\sqrt{3-x}+\sqrt{3+x}}{\left|x\right|-2}\)
b , \(y=\frac{\left|2x+1\right|-\sqrt{2}}{2x^2-3x+1}\)
tìm tập xác định của hàm số
Q) \(y=\frac{x+3}{\sqrt{\left|x-1\right|+\left|3-2x\right|+x-2}}\)
R) \(y=\frac{4x^2+1}{\sqrt{4-x\left|x\right|}}\)
Tìm tập xác định của hàm số: y=\(\frac{\sqrt{3-2x}+x\sqrt{3x+11}}{\sqrt{1-x^2}+\sqrt{\left|3x^2-2x-5\right|}}\)
Tìm tập xác định của :
a) y=\(\frac{1+x}{1-\sqrt{x-3}}\)
b) y=\(\frac{\left(2x+1\right)\sqrt{3-5x}}{|x|-2}\)
c) y=\(|x+3|+\frac{\sqrt{2x+1}}{x}\)
Tìm tập xác định của hàm số sau:
y=\(\sqrt{\left(x+1\right)\left(x-3\right)}\)
y=\(\frac{1}{|x^2-4|+|x^2-2x|}\)
y=\(\frac{\sqrt{4-|x|}}{x^2-2x}\)
Giải nhanh giúp em bài này ạ .
Tìm tập xác định của hàm số:
d: \(y=\left\{{}\begin{matrix}\dfrac{x-3}{x-4};x< 0\\\sqrt{x+1};x\ge0\end{matrix}\right.\)
e: \(\sqrt[4]{\sqrt{x^2+2x+5}-\left(x+1\right)}\)
d.
Với \(x-4\ne0;\forall x< 0\Rightarrow\dfrac{x-3}{x-4}\) xác định với mọi \(x< 0\)
\(x+1>0;\forall x\ge0\Rightarrow\sqrt{x+1}\) xác định với mọi \(x\ge0\)
\(\Rightarrow\) Hàm xác định trên R
e.
Ta có:
\(\sqrt{x^2+2x+5}-\left(x+1\right)=\sqrt{\left(x+1\right)^2+4}-\left(x+1\right)\)
\(>\sqrt{\left(x+1\right)^2}-\left(x+1\right)=\left|x+1\right|-\left(x+1\right)\ge0\) ; \(\forall x\)
\(\Rightarrow\) Hàm xác định trên R
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
bài 1 tìm tập xác định của các hàm số
a) y= \(\dfrac{4x^2+1}{x^3-x}\)
b) y= \(\dfrac{5\sqrt{x}}{\left|x\right|-1}\)
c) y = \(\dfrac{2x-1}{\sqrt[3]{x^2-1}}\)
Lời giải:
a. ĐKXĐ: $x^3-x\neq 0$
$\Leftrightarrow x(x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq 0;\pm 1$
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)
b.
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)
TXĐ:
\([0;+\infty)\setminus \left\{1\right\}\)
c.
ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)
TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)