Tìm điều kiện xác định của các hàm số
a ) căn x +1 + 1/x-2
cho hàm số y=f(x)=1/2x-2 tìm điều kiện của x để hàm số y =f(x) xác định
Tìm điều kiện xác định để các biểu thức sau có nghĩa;
a,1/1-căn x^2-3
b,x-1/2-căn 3x+1
c,2/căn x^2-x+1
d,1/căn x- căn 2x-1
Tìm điều kiện xác định của pt và giải hệ pt sau :
x2- căn (1-x) = căn ( x-2 ) + 3
\(x-\sqrt{1-x}=\sqrt{x-2}+3\)
\(ĐK:\left\{{}\begin{matrix}1-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy PT vô nghiệm
cho biểu thức A = (2 căn x +x chia x căn x -1 -1 chia căn x - 1 ) chia ( căn x + 2 chia x + căn x +1 )
a) tìm điều kiện xác định của biểu thức A
b) rút gọn biểu thức A
c) tính giá trị A khi x = 9-4 căn 5
d) tìm giá trị lớn nhất của A
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
Cho hàm số \(y=f\left(x\right)=\frac{\sqrt{2-x}-\sqrt{2+x}}{x}\)
a. Tìm điều kiện xác định của hàm số đã cho
b. Tìm trên đồ thị hàm số đã cho các điểm có hoành độ và tung độ là những số nguyên
c. CMR: với mọi giá trị của x thỏa điều kiện xác định trên thì \(f\left(-x\right)=f\left(x\right)\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)
c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)
Tìm điều kiện xác định của hàm số f x = log 3 2 x + 1 - 6 log 1 3 3 - x - 12 log 8 x - 1 3
A. - 1 2 < x < 1
B. x < 3
C. 1 < x < 3
D. x > 1
Tìm điều kiện xác định của hàm số f x = log 3 2 x + 1 - 6 log 1 5 3 - x - 12 log 8 x - 1 3
A.-1 < x <1
B. x < 3
C.1 < x < 3
D. x > 1
Tìm điều kiện xác định căn bậc hai cũa x^2-x+1
( căn x trên ( căn x - 1 ) ) - ( 1 trên (x- căn x))
a. Tìm điều kiện x để P được xác định
b. Rút gọn P
c. Tìm tất cả các số thực x sao cho x> 1/3 đồng thơi phải nhận giá trị nguyên
cậu có thể viết lại cho dễ hiểu hơn ko?
\(\frac{\sqrt{x}}{\sqrt{x}-1}\)\(-\frac{1}{x-\sqrt{x}}\)
a. ĐKXĐ là\(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\\sqrt{x}\left(\sqrt{x}-1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x\ne1\\x\ne0\end{cases}}}\)
b. ta có:
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\left(\sqrt{x}+1\right)\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c. đồng thời nhận giá trị nguyên là x nguyên hay P nguyên vậy?
Cho hàm số y=(a-1)x+2 a) Tìm điều kiện của a để hàm số đã cho là hàm số bậc nhất. b) Xác định a để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1. c) Vẽ đồ thị hàm số vừa tìm được.
a) để hàm số y=(m+5).x+2m-10 là hàm số bậc nhất thì
m+5 khác 0 <=> m khác -5
b) để hàm số y=(m+5).x+2m-10 là hàm số đồng biến thì
m+5>0 <=> m> -5
c) để hàm số y=(m+5).x+2m-10 đi qua điểm A(2;3) => x=2;y=3
Thay x=2;y=3 vào hàm số y=(m+5).x+2m-10 ta có:
3=(m+5).2+2m-10
<=> 13=2m+10+2m
<=> 3=4m <=> m=3/4
d)vì đồ thị hàm số y=(m+5).x+2m-10 cắt trục tung tại điểm có tung độ bằng 9 => x=0;y=9
thay x=0;y=9 vào hàm số y=(m+5).x+2m-10 ta có:
9=(m+5).0+2m-10 <=> 19=2m <=> m=19/2=9.5
e) vì đồ thị hàm số y=(m+5).x+2m-10 cắt trục hoành tại điểm có hoành độ là 10 => x=10;y=0
thay x=10;y=0 vào hàm số y=(m+5).x+2m-10 ta có:
0=(m+5).10+2m-10 <=> 0= 10m+50+2m-10
<=> -40=12m <=> m= -10/3
g) để đồ thị hàm số y=(m+5).x+2m-10 song song với đths y=2x-1 thì
m+5=2 <=> m=-3