Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran thi mai anh
Xem chi tiết
Lê Anh Duy
12 tháng 2 2020 lúc 20:25

\(M\ge\frac{\left(1+1+1+1\right)^2}{3\left(a+b+c+d\right)}=\frac{16}{3\left(a+b+c+d\right)}\) ( bdt Cauchy dạng Engel)

Mặt khác, có \(\left(a+b+c+d\right)^2\le4\left(a^2+b^2+c^2+d^2\right)\le16\) ( bdt Bunykovski)

\(\Leftrightarrow a+b+c+d\le4\)

\(\Rightarrow M\ge\frac{16}{3\left(a+b+c+d\right)}\ge\frac{16}{12}=\frac{4}{3}\)

Dấu "=" : x =y =z = 1

Khách vãng lai đã xóa
Phùng Gia Bảo
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
tth_new
7 tháng 1 2020 lúc 18:36

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:28

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:29

í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn 

Khách vãng lai đã xóa
nguyen phu trong
Xem chi tiết
lý canh hy
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2020 lúc 18:27

\(P=\text{∑}\frac{a\left(\frac{1}{a}+1+c\right)}{\left(a^3+b^2+c\right)\left(\frac{1}{a}+1+c\right)}\le\frac{\text{∑}\left(1+a+ac\right)}{\left(a+b+c\right)^2}\)

\(\le\frac{3+a+b+c+\frac{\left(a+b+c\right)^2}{3}}{\left(a+b+c\right)^2}\)

\(\le\frac{3+3+\frac{3^2}{3}}{3^2}=1\)

"=" khi a=b=c=1

Khách vãng lai đã xóa
Minh Nguyễn Cao
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
asssssssaasawdd
Xem chi tiết
Phạm Vân Anh
Xem chi tiết
tth_new
7 tháng 4 2020 lúc 19:37

BĐT bên trái hiển nhiên là Nesbitt.

BĐT bên phải: 

Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:

${a}^{6}b+{a}^{6}c-{a}^{5}{b}^{2}-{a}^{5}{c}^{2}-{a}^{2}{b}^{5}-{a}^{2}
{c}^{5}+a{b}^{6}+a{c}^{6}+{b}^{6}c-{b}^{5}{c}^{2}-{b}^{2}{c}^{5}+b{c}^
{6} \geqq 0$

Giả sử $c=\min\{a,b,c\}$. Ta cần chứng minh:

Đặt $a=c+x,b=c+y,c=c$ thì $x,y \geqq 0$.

Cần chứng minh: 

$\left( 8\,{x}^{2}-8\,xy+8\,{y}^{2} \right) {c}^{5}+10\, \left( x+y
 \right)  \left( 2\,{x}^{2}-3\,xy+2\,{y}^{2} \right) {c}^{4}+ \left( 
20\,{x}^{4}-20\,{x}^{2}{y}^{2}+20\,{y}^{4} \right) {c}^{3}+5\, \left( 
x+y \right)  \left( xy \left( 7\,{x}^{2}-13\,xy+7\,{y}^{2} \right) +2
\, \left( x-y \right) ^{4} \right) {c}^{2}+ \left( xy \left( xy
 \left( 29\,{x}^{2}-56\,xy+29\,{y}^{2} \right) +16\, \left( x-y
 \right) ^{4} \right) +2\, \left( x-y \right) ^{6} \right) c+xy
 \left( x+y \right)  \left( {x}^{2}+{y}^{2} \right)  \left( x-y
 \right) ^{2} \geqq 0$

P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
14 tháng 4 2020 lúc 15:51

SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-

KMTTQ giả sử \(a\ge b\ge c\)

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )

Vậy ta có ĐPCM

Khách vãng lai đã xóa
tth_new
14 tháng 4 2020 lúc 16:16

zZz Cool Kid_new zZz đoạn cuối quy đồng lên đê, khỏi giả sử.

Xem thêm tại: https://h o c 2 4 .vn/hoi-dap/question/826398.html

Khách vãng lai đã xóa