có hay ko các số nguyên lẻ a1, a2, a3,..., a6 thỏa mãn
a1+a2+a3+a4+a5=a6
\(a_1+a_2+a_3+a_4+a_5+a_6+a_7=0\left(1\right)\)
\(a_1+a_2=a_3+a_4=a_5+a_6=a_1+a_7=1\left(2\right)\)
Thay (2) vào (1) :
\(1+1+1+a_7=0\)
\(\Rightarrow a_7=-3\)
\(a_1=1-a_7=1--3=4\)
\(a_2=1-a_1=1-4=-3\)
Chúc bạn học tốt !!!
cho các số a1+a2=a2+a3=a3+a4=a4+a5=a5+a6=a6+a7=..=a2016+a2017
mà a1+a2+a3+a4+a5+a6+a7+a8+...+a2016+a2017=4032 tìm các số a1,a2,a3,a4,a5,...,a2016,a2017
toi khong biet toi dang nho cac ban giai do ma
Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
Cho 6 số nguyên dương: a1 < a2 < a3 < a4 < a5 < a6. Chứng minh a1+a3+a5/ a1+a2+ 3+a4+a5+a6
Cho 6 số khác 0: a1, a2, a3, a4, a5, a6 thỏa mãn:
a22 = a1 . a3, a32 = a2 . a4, a42 = a3 . a5, a52 = a4 . a6
Chứng minh rằng:
a15 + a25 + a35 + a45 + a55 / a25 + a35 + a45 + a55 + a65 = a1/a6
chứng minh rằng trong 6 số nguyên a1 a2 a3 a4 a5 a6 thỏa mãn a1^2+a2^2+a3^2+a4^2+a5^2=a6^2 thì các số ko đồng thời là số lẻ
trình bày rõ ha
Ta có biẻu thức:
a1^2+a2^2+a3^2+a4^2+a5^2=a6^2
Giả sử cả sáu số đều là số lẻ => mỗi hạng tử ở vế phải khi chia cho 8 đều có số dư là 1
<=>Nhưng ở vế trái khi cùng chia cho 8 thì lại dư 5 (mâu thuẫn)
Vậy cả sáu số trên đều không thể là số lẻ.
Cho 6 số khác 0: a1, a2, a3, a4, a5, a6 thỏa mãn:
a22 = a1 . a3, a32 = a2 . a4, a42 = a3 . a5, a52 = a4 . a6
Chứng minh rằng:
a15 + a25 + a35 + a45 + a55 / a25 + a35 + a45 + a55 + a65 = a1/a6
MONG CÁC BẠN GIÚP MÌNH NHA 😉👌✍
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
Ko mất tính tổng quát giả sử \(a_1=\text{max}\left\{a_2;a_3;a_4;a_5\right\}\).
Áp dụng BĐT AM-GM ta có:
\(a_1a_2+a_2a_3+a_3a_4+a_4a_5\le a_1\left(a_2+a_3+a_4+a_5\right)\)
\(\le\frac{\left(a_1+a_2+a_3+a_4+a_5\right)^2}{4}=\frac{1}{4}\)
Xảy ra khi có 2 số bằng \(\frac{1}{2}\) và 3 số còn lại bằng 0