PTĐTTNT:
1) x2y2 - 1
Cho x+y =1 và xy khác 0. Chứng minh rằng xy3−1−yx3−1+2(x−y)x2y2+3=0xy3−1−yx3−1+2(x−y)x2y2+3=0.
Tính:
a)A=xy+x2y2+x4y4+...+x2022y2022 tại x=3;y=1/3
b)B=xy+x2y2+x3y3+...+x2021y2021+x2022+y2022
Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:
$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$
$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$
Gỉa sử (x;y) là hai số thỏa mãn x 2 y 2 - 1 = 5 , x 2 y 2 + 2 = 125 thì giá trị của x 2 + y 2 bằng
A. 26
B. 30
C. 20
D. 25
PTĐTTNT
`x^12+x^2+1`
PTĐTTNT :
9-16(x-1)^2
= 32-4\(^2\)(x-1)\(^2\)
=[3-4(x-1)].[(3+4(x-1)]
=(3-4x+4)(3+4x-4)
=(7-4x)(4x-1)
PTĐTTNT :
`4x^2-4x-25y^2+1`
\(\left(2x-1\right)^2-25y^2=\left(2x-1-5y\right)\left(2x-1+5y\right)\)
Làm tính chia: x 3 y 3 - 1 / 2 x 2 y 3 - x 3 y 2 : 1 / 3 x 2 y 2
x 3 y 3 - 1 / 2 x 2 y 3 - x 3 y 2 : 1 / 3 x 2 y 2 = x 3 y 3 : 1 / 3 x 2 y 2 + - 1 / 2 x 2 y 3 : 1 / 3 x 2 y 2 + - x 3 y 2 : 1 / 3 x 2 y 2 = 3 x y - 3 / 2 - 3 x
I : PTĐTTNT
a) (2x+1)^2-(x-1)^2
a, \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
PTĐTTNT: x8 + x + 1
\(x^8+x+1=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)
\(x^8+x+1=x^8+x^7-x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) + 1
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)