\(\frac{12-3x}{32}=\frac{6}{4-x}\)
Tìm x, biết:
\(\frac{12-3x}{32}\)= \(\frac{6}{4-x}\)
vì ta có 12-3x/32 =12-3 nhân x
mà rút gon lại bằng 6 ,còn 32 rút gọn lại bằng 4 nên x=0
VD: 12-3 nhân 0 /32
=12-0 / 32
=12 / 32 và rút gọn bằng 6/4
nên x=0
hok tốt
\(\frac{12-3x}{32}=\frac{6}{4-x}ĐK:x\ne4\)
\(\Leftrightarrow\frac{\left(12-3x\right)\left(4-x\right)}{32\left(4-x\right)}=\frac{192}{32\left(4-x\right)}\)
\(\Leftrightarrow48-12x-12x+3x^2=192\)
\(\Leftrightarrow48-24x+3x^2=192\)Xử nốt nhé, dễ rồi!!!
\(\frac{12-3x}{32}=\frac{6}{4-x}\)
\(\Leftrightarrow\left(12-3x\right)\left(4-x\right)=32.6\)
\(\Leftrightarrow48-12x-12x+3x^2=192\)
\(\Leftrightarrow48-24x+3x^2=192\)
\(\Leftrightarrow3\left(18-8x-x^2\right)=192\)
\(\Leftrightarrow\left(4-x\right)^2=64\)
\(\Leftrightarrow\left(4-x\right)^2=8^2\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=8\\4-x=-8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=12\end{cases}}\)
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
Tìm x:\(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}-\frac{2x^2}{3x^2-12}\right):\frac{6+13x}{24-12}\)
Ai nhanh mk tick cho , mk cam on
R/g\(\left[\left(x^3-1\right)-\frac{7-x^3}{3+x^3}.\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
Rút gọn : \(\left[\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
Tìm x \(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}-\frac{2x^2}{3x^2-12}\right):\frac{6+13x}{24-12}\)
Ai nhanh mk tick cho , mk cam on
rút gọn phân thức sau:
\(\frac{36.\left(x-2\right)}{32-16.x}\)
\(\frac{3.x^2-12.x+12}{x^4-8.x}\)
\(\frac{7.x^2+14.x+7}{3x^2+3x}\)
\(\frac{x^4-5.x^2+4}{x^4-10x^2+9}\)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2.x^2-x+1}\)
a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)
b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)
c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)
d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)
\(\frac{x}{x+2}+\frac{6}{2-x}=\frac{3x-12}{x^2-4}\)
\(ĐKXĐ:x\ne\pm2\)
\(\frac{x}{x+2}+\frac{6}{2-x}=\frac{3x-12}{x^2-4}\)
\(\Leftrightarrow\frac{x}{x+2}-\frac{6}{x-2}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-2x-6x-12-3x+12=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{0;11\right\}\)
\(ĐKXĐ:x\ne\pm2\)
\(\frac{x}{x+2}+\frac{6}{2-x}=\frac{3x-12}{x^2-4}\)
\(\Leftrightarrow\frac{x}{x+2}+\frac{-6}{x-2}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)=0\)
\(\Leftrightarrow x^2-2x-6x-12-3x+12=0\)
\(\Leftrightarrow x^2-11x=0\)\(\Leftrightarrow x\left(x-11\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)( thoả mãn \(ĐKXĐ\))
Vậy tập nghiệm của phương trình là \(S=\left\{0;11\right\}\)