Cho (d): y= (m-3)x+m-5
tìm m để khỏang cách từ O đến d là ngắn nhất
cho (d): y= mx + 2
a) chứng minh khi m thay đổi d luôn đi qua A(0;2)
b) tìm m để khỏang từ góc tọa độ đến d là lớn nhất
c) khi m khác tìm m để khoảng cách từ 0 đến đường thẳng d = 1
Cho hàm sô y = 2x + m − 3 có đồ thị là đường thằng (d) (với m là tham sỗ).
a) Tìm m đề khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng √5.
b) Tìm m để khoảng cách từ gốc tọa độ O đến đường thăng (d) nhỏ nhất.
Trong mặt phẳng toạ độ Oxy, cho (d) y=(m+5)x+2m-10. Tìm m để khoảng cách từ O đến d lớn nhất.
*TH1: m ≠ -5
Gọi M(xM; yM) là điểm cố định mà (d) đi qua với mọi m
=> xM; yM thoả mãn phương trình: yM = (m + 5)xM + 2m - 10 ∀m
⇔ yM = mxM + 5xM + 2m - 10 ∀m
⇔ m(xM + 2) + 5xM - yM - 10 = 0 ∀m
⇔ \(\left\{{}\begin{matrix}x_M+2=0\\5x_M-y_M-10=0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x_M=-2\\y_M=-20\end{matrix}\right.\)
Vậy M(-2; -20) là điểm cố định mà (d) luôn đi qua với mọi m
=> OM = \(\sqrt{\left(x_O-x_M\right)^2+\left(y_O-y_M\right)^2}\) = \(\sqrt{2^2+20^2}\) = \(2\sqrt{101}\)
Gọi H là chân đường vuông góc hạ từ O xuống (d) => OH ≤ OM (tính chất đường vuông góc và đường xiên)
Vậy với m ≠ -5; khoảng cách lớn nhất từ O đến (d) là \(2\sqrt{101}\)
*TH2: m = -5
Với m = -5 ta có (d): y = 2.(-5) - 10 = -20
=> (d) // Ox và cắt Oy tại điểm có tung độ -20
=> Khoảng cách từ O đến (d) là 20
Ta có: 20 < \(2\sqrt{101}\) => Với m ≠ -5 thì khoảng cách từ O đến (d) là lớn nhất.
Cho (d): y=x+m-4. Tìm m để khoảng cách từ O đến (d) lớn nhất
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d): y=(m+2)x+2m+3 là lớn nhất
cho đường thẳng (d): y=m(2x-1)+3-2x
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 1.
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất.
Cho hàm số y = (m - 2)x - m + 5 ( với m khác 2) (d). Tìm m để khoảng cách từ gốc tọa độ đến (d) là lớn nhất.
Cho hàm số y = ( m -1).x + 2m – 1 ( m khác 1) có đồ thị là đường thẳng (d)
a) Tìm m để (d) đi qua E ( 3, 8)
b) Tìm m để (d) cắt Ox tại A và Oy tại B sao cho diện tích tam giác ABC vuông cân .
c) Tìm m để khoảng cách từ O đến (d) lớn nhất và nhỏ nhất
a: Thay x=3 và y=8 vào (d), ta được:
3(m-1)+2m-1=8
=>5m-4=8
=>5m=12
=>m=12/5
b: Tọa độ A là:
y=0 và x=(-2m+1)/(m-1)
=>OA=|2m-1/m-1|
Tọa độ B là:\
x=0 và y=2m-1
=>OB=|2m-1|
Để ΔOAB vuông cân tại O thì OA=OB
=>|2m-1|(1/|m-1|-1)=0
=>m=1/2 hoặc m=2 hoặc m=0
cho hàm số y=(m-2)x+5(m khác 2) có đồ thị là đường thẳng d
a. tìm m để d đi qua điểm A(2;-1)
B. Tìm m để khoảng cách từ gốc O đến đường thẳng d bằng 3
a: Thay x=2 và y=-1 vào (d), ta được:
2(m-2)+5=-1
=>2(m-2)=-6
=>m-2=-3
=>m=-1
b: (d): y=(m-2)x+5
=>(m-2)x-y-5=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-2\right)+0\left(-1\right)-5\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=3 thì \(\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}=3\)
=>\(\sqrt{\left(m-2\right)^2+1}=\dfrac{5}{3}\)
=>\(\left(m-2\right)^2+1=\dfrac{25}{9}\)
=>\(\left(m-2\right)^2=\dfrac{16}{9}\)
=>\(\left[{}\begin{matrix}m-2=\dfrac{4}{3}\\m-2=-\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{10}{3}\\m=\dfrac{2}{3}\end{matrix}\right.\)