Cho a,b,c dương thỏa mãn: \(a^2+b^2+c^2=3\).CMR: \(a^{2019}+b^{2019}+c^{2019}\ge3\)
Cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. CMR:
\(\left(a^{2019}+b^{2019}\right)^2+\left(c^{2019}-d^{2019}\right)^2\)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)
\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)
\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)
Cho a, b, c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho a,b,c dương thỏa mãn : a+b+c=2019
Tính A = \(\frac{a}{2019-c}+\frac{b}{2019-a}+\frac{c}{2019-b}\)
Thiếu dữ kiện, nếu chỉ cho vậy thì không tính đc gt cụ thể của A
+ Làm theo đề là tìm Min của A nhé!
\(A=\frac{a}{2019-c}+\frac{b}{2019-a}+\frac{c}{2019-b}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}.\)
\(A+3=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)\(\ge\left(a+b+c\right)\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)(BĐT Bunhia)
Dấu "=" xra khi a=b=c=2019/3
Cho a,b,c thỏa mãn $\frac{a}{2018}$ =$\frac{b}{2019}$ =$\frac{c}{2020}$
CMR:(a-c)^3=8 $(a-b)^{2}$ (b-c)
các số nguyên dương a,b thỏa mãn điều kiệcho n a^3+b^3=c^3 .So sánh a^2019+b^2019 và c^2019
mày mất nết láo toét ăn tông lào vào viện tâm thần mà ở mẹ thằng chó
cho a,b,c,d thuộc z thỏa mãn ab+bc+ca=2019
cmr : ( a^2 + 2019) ( b^2 + 2019 ) ( c^2 + 2019) là số chính phương
Cho a,b,c thỏa mãn:\(a^2+b^2+c^2=ab+bc+ca\) và \(a^{2019}+b^{2019}+c^{2019}=3^{2020}\)
Tính \(A=\left(a-2\right)^{2017}+\left(b-3\right)^{2018}+\left(c-4\right)^{2019}\)
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0