Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thúy Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 9 2019 lúc 20:32

\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2\)

\(A=\left(5x-3y+8x\right)\left(5x-3y-8z\right)+1\)

\(=\left(5x-3y\right)^2-64z^2+1\)

\(=\left(5x-3y\right)^2-16\left(x^2-y^2\right)+1\)

\(=25x^2+9y^2-30xy-16x^2+16y^2+1\)

\(=9x^2-30xy+25y^2+1\)

\(=\left(3x-5y\right)^2+1>0\) \(\forall x;y\)

Thúy Nguyễn
22 tháng 9 2019 lúc 18:13

Giúp mk đi các bạn ơi

Mk nhớ ơn suốt đời

Thúy Nguyễn
Xem chi tiết
Ahwi
22 tháng 9 2019 lúc 23:10

có \(x^2=y^2+4x^2\)

\(x^2-y^2=4z^2\)

Tiếp tục với \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)+1\)

\(=\left(5x-3y\right)^2-\left(8x\right)^2+1\)

\(=25x^2-30xy+9y^2-64x^2+1\)

\(=25x^2-30xy+9y^2-16\cdot4x^2+1\)

Thay \(x^2-y^2=4z^2\)

\(\Rightarrow25x^2-30xy+9y^2-16\cdot4x^2+1\)

\(=25x^2-30xy+9y^2-16\cdot\left(x^2-y^2\right)+1\)

\(=25x^2-30xy+9y^2-16x^2+16y^2+1\)

\(=9x^2-30xy+25y^2+1\)

\(=\left(9x^2-30xy+25y^2\right)+1\)

\(=\left(3x-5y\right)^2+1\)

ta có \(\left(3x-5y\right)^2\ge0\)

\(\Rightarrow\left(3x-5y\right)^2+1>0\)

\(\Rightarrow\left(5x-3x+8z\right)\left(5x-3y-8z\right)+1\)luôn dương với mọi x;y

huongkarry
Xem chi tiết
Kia Cerato
5 tháng 8 2017 lúc 8:03

Áp dụng hằng đẳng thức ( a - b ) ( a + b ) = a2 - b2 ta đc:

     \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)

                                                                     \(=25x^2-30xy+9y^2-64z^2\)

                                                   Đề có sai ko vậy bn

Phan Văn Hiếu
6 tháng 8 2017 lúc 20:09

mk lấy kq của bạn Kia Cerato mk giải típ

tc \(x^2=y^2+4z^2\Leftrightarrow x^2-y^2=4z^2\)

\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=25x^2+9y^2-30xy-16x^2+16y^2\)

\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

ok

changchan
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 16:23

\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)

\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

Nguyễn Hằng Nga
Xem chi tiết
Phạm Thu Hà
Xem chi tiết
Mai Diễm My
Xem chi tiết
Nhã Doanh
7 tháng 4 2018 lúc 16:40

Sửa đề: x2 = y2 + z2

=> z2 = x2 - y2

Ta có:

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)\)

\(=\left(5x-3y\right)^2-\left(4z\right)^2\)

\(=25x^2-30xy+9y^2-16z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=\left(3x-5y\right)^2\)

=> ĐPCM

Kiều Vũ Minh Đức
Xem chi tiết
Yukru
16 tháng 8 2018 lúc 20:21

Ta có:

\(x^2-y^2-z^2=0\left(gt\right)\)

Nếu \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-\left(3x-5y\right)^2=16z^2\)

\(\Rightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=16z^2\)

\(\Rightarrow\left(2x+2y\right)\left(8x-8y\right)=16z^2\)

\(\Rightarrow2\left(x+y\right).8\left(x-y\right)=16z^2\)

\(\Rightarrow16\left(x^2-y^2\right)=16z^2\)

\(\Rightarrow x^2-y^2=z^2\)

\(\Rightarrow x^2-y^2-z^2=0\)

\(\Rightarrow\) Đúng với giả thuyết ban đầu

Vậy \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\) với \(x^2-y^2-z^2=0\)

học online
Xem chi tiết
Nhật Anh Tráng
3 tháng 1 2020 lúc 21:10

Ta có

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16z^2\left(!\right)\)

Thay \(x^2=y^2+z^2\) vào ! thì

\(25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=\left(3x-5y\right)^2\)

Khách vãng lai đã xóa