e^(2x)-3^(e^x)-4+12*(2^)-x=0
e, x2-4+(x-2)2 = 0
f, x3+1=x(x+1)
g, x2(x-3)+12-4x = 0
h, (2x-1)2-(x+3)2 = 0
Đề bài yêu cầu giải pt?
e, \(\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)\left(x+2+x-2\right)=0\Leftrightarrow x=0;x=2\)
f, \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-1\right)^2=0\Leftrightarrow x=1;x=-1\)
g, \(x^2\left(x-3\right)+4\left(3-x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=-2;x=3\)
h, \(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\Leftrightarrow x=4;x=-\dfrac{2}{3}\)
b. x( x – 4) - 2x + 8 = 0
c. x^2-25 –( x+5 ) = 0
d.(2x -1)^2- (4x2 – 1) = 0
e. ( 3x – 1)^2 – ( x +5)^2 = 0
f. x^3 – 8 – (x -2)(x -12) =0
b) x(x-4) - 2x+8 = 0
x(x-4) - 2(x-4) = 0
(x-2) (x-4) = 0
TH1: x-2=0 TH2: x-4=0
x=2 x=4
Vậy x\(\in\){2;4}
\(b,\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ c,\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\\ \Leftrightarrow\left(x+5\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\\ d,\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ e,\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ f,\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-12\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow x=2\)
b) x(x-4)-2x+8=0
x(x-4)-2(x-4)=0
(x-4)(x-2)=0
th1: x-4=0
x=4
th2: x-2=0
x=2
Vậy x thuộc tập hợp 4;-2
Câu 1. Giải các phườn trình sau:
a, 3x+6=0
b, 2x-10=0
c, 3x-7=11
d, 3x-9=0
e, 3x(2-x) =15(x-2)
f, (x+5)(x+4)=0
g, x(x+4)=0
h, (2x -4)(x-2)=0
i, (x+1/5)(2x-3)=0
k, x²-4x=0
m, 4x²-1=0
n, x²-6x+9=0
l, (3x-5)²-(x+4)²=0
o, 7x(x+2)-5(x+2)=0
p, 3x(2x-5)-4x+10=0
q, (2-2x)-x²+1=0
r, x(1-3x)=5(1-3x)
s, 2x-3/4+x+1/6=3
t, x-3/4-2x+1/3=x/6
u, x+1/13+x+2/12=x+3/11+x+4/10
v, 2x+1/15+2x+2/14=2x+3/13+2x+4/12
Giúp e nha mn. E cảm ơn trc ạ!
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
r, x(1-3x)=5(1-3x)
➜x(1-3x)-5(1-3x)=0
➜(x-5)(1-3x)=0
➜\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Mk lười lắm mai nha!!!~~~~~~~~~~~~
Làm dần:
a, 3x+6=0
➜3x=-6
➜x=2
b, 2x-10=0
➜2x=10
➜x=5
c, 3x-7=11
➜3x=11+7
➜3x=18
➜x=6
d, 3x-9=0
➜3x=9
➜x=3
tìm số nguyên x , biết :
a) x + 546 = 46
b) 2x - 19 x 3 = 27
c) x + 12= 23 + 3 x 3^4
d) x- 12 = 3 - 3 x 2^4
e) ( 27 - x ) nhân ( x +9 ) = 0
f) ( -x) x ( x-43) = 0
a) \(x+546=46\\ x=46-546\\ x=-500\)
b) \(2x-19\times3=27\\ 2x-57=27\\ 2x=27+57\\ 2x=84\\ x=84:2\\ x=42\)
c) \(x+12=23+3\times3^4\\ x+12=23+3\times81\\ x=23+243-12\\ x=254\)
d) \(x-12=3-3\times2^4\\ x-12=3-3\times16\\ x=3-48+12\\ x=-33\)
e) \(\left(27-x\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}27-x=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=27\\x=-9\end{matrix}\right.\)
f) \(\left(-x\right)\left(x-43\right)=0\\ \Rightarrow\left[{}\begin{matrix}-x=0\\x-43=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=43\end{matrix}\right.\)
a) x + 546 = 46
x = 46 - 546
x = -500
b) 2x - 19 x 3 = 27
2x - 57 = 27
2x = 27 + 57
2x = 84
x = 84 : 2
x = 42
c) x + 12 = 23 + 3 x 34
x + 12 = 23 + 3 x 81
x + 12 = 23 + 243
x + 12 = 266
x = 266 - 12
x = 254
d) x - 12 = 3 - 3 x 24
x - 12 = 3 - 3 x 16
x - 12 = 3 - 48
x - 12 = -45
x = -45 + 12
x = -33
e) (27 - x) x (x + 9) = 0
TH1: 27 - x = 0
x = 27 - 0
x = 27
TH2: x + 9 = 0
x = 0 + 9
x = 9
⇒ x = 27 hoặc x = 9
f) (-x) x (x - 43) = 0
TH1: -x = 0
⇒ x = 0
TH2: x - 43 = 0
x = 0 + 43
x = 43
⇒ x = 0 hoặc x = 43.
1) Tìm x biết :
a) 3/4-(1/2:x+1/2)=3/5
b)3x.(1/2x-1)=0
c)(4-x).(2x+3)=0
d)4/-3=-12/x
e)4x/-3=12/-x
a) \(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{4}-\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{15}{20}-\frac{12}{20}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{13}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{10}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}.\frac{20}{3}=\frac{10}{3}\)
Vậy: \(x=\frac{10}{3}\)
b) \(3x.\left(\frac{1}{2}.x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy: \(x\in\left\{0;2\right\}\)
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=\frac{3}{2}\end{cases}}}\)
Vậy: \(x\in\left\{4;\frac{3}{2}\right\}\)
d) \(\frac{4}{-3}=\frac{-12}{x}\)
\(\Leftrightarrow4x=\left(-12\right).\left(-3\right)\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
Vậy: \(x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x.\left(-x\right)=12.\left(-3\right)\)
\(\Leftrightarrow-4x^2=-36\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy: \(x\in\left\{3;-3\right\}\)
a,Ta có: 3/4-(1/2:x+1/2)=3/5
-(1/2:x+1/2)=3/5-3/4
-(1/2:x+1/2)=-3/20
1/2:x+1/2=3/20
1/2:x=3/20-1/2
1/2:x=-7/20
x=1/2:-7/20
x=-10/7
b,Ta có: 3x.(1/2x-1)=0
Với 3x=0 =>x=0
vói1/2x-1=0
a)\(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{-7}{20}\Leftrightarrow x=-\frac{10}{7}\)
b) \(3x\left(\frac{1}{2}x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x = 0 hoặc x = 2
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Vậy x = 4 hoặc x = -3/2
d) \(\frac{4}{-3}=-\frac{12}{x}\Leftrightarrow4x=36\Leftrightarrow x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x\left(-x\right)=-36\)
\(\Leftrightarrow x\left(-x\right)=-9\)
\(\Leftrightarrow-x^2=-9\)
\(\Leftrightarrow-x^2=-3^2\Leftrightarrow-x=-3\Leftrightarrow x=3\)
a) -5 (2x + 6 ) +b | 3x + 9 | = 7x
b) 7(x - 4 ) - | 4x - 12 | = 0
c) | x - 5 | - | x - 3 | =0
d)| x + 1| + | -x + 12 | = 2x -7
e) | x + 2| - | x + 6 | - (-15) = 0
f) | 2x- 10 | + | 3y - 4 | = 0
g) | - 3x + 1 | - | 2x + 8 | + 3x = 0
h) 3( x - 1 ) - 5 | x + 3 | = 0
Mọi người giúp mình nhanh nhé ! Mình đang cần gấp
a) (x – 2)(x2 + 2x + 4) – x( x2 +2) = 12 b) (x – 3)2 – (x+2)(x–2) = 16
c) x3 – 9x = 0 d) x3 – 6x2 + 9x – 54 = 0
giúp e vs ạ
\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)
giải pt
a, 2x^3++3x^2-8x-12=0
b, x^3-4x^2-x+4=0
c,x^3-x^2-x-2=0
d,x^4-3x^3+3x^2-x=0
e,(x+1)(x^2-2x+3)=x^3+1
g,x^3+3x^2+3x+1=4x+4
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\pm2\end{cases}}\)
giải phương trình chứa dấu giá trị tuyệt đối sau:
\(a)|-2,5x|=x-12\)
\(b)|5x|-3x-2=0\)
\(c)|-2x|+x-5x-3=0\)
\(d)|3-x|+x^2-x(x+4)=0\)
\(e)(x-1)^2+|x+21|-x^2-13=0\)