Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2019 lúc 7:39

Đáp án D

Đinh Kim Huệ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Alone
30 tháng 3 2017 lúc 20:13

Câu B=3

Bùi Thị Vân
18 tháng 5 2017 lúc 10:42

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) D = (10.84, -5.94) D = (10.84, -5.94) D = (10.84, -5.94)
Các véc tơ bằng véc tơ \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh lục giác là: \(\overrightarrow{FO};\overrightarrow{AB};\overrightarrow{ED}\).
Vậy có 3 véc tơ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2017 lúc 3:19

Các nhóm vecto bằng nhau là: 

Đáp án B

Kim Chi Hoàng
Xem chi tiết
Dương Hàn Thiên
Xem chi tiết
Ngô Thành Chung
27 tháng 12 2020 lúc 11:03

600 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2017 lúc 5:49

Chọn B

Vũ Minh Phương
Xem chi tiết
YangSu
5 tháng 6 2023 lúc 16:02

\(1,\) Đa giác có 24 đỉnh \(\Rightarrow\) Đa giác có 24 cạnh

Số đường chéo của đa giác là \(C_{24}^2-24=252\) đường chéo.

\(2,\) 

\(a,\) Từ các đỉnh của đa giác, lập được \(252+24=276\) đoạn thẳng.

\(b,\) Từ các đỉnh của đa giác, lập được \(A^2_{24}=552\) vectơ khác vectơ-không. 

\(c,\)  Từ các đỉnh của đa giác, lập được \(C^3_{24}=2024\) tam giác.

Lan Lương Ngọc
Xem chi tiết
Sakura kun sky fc11
15 tháng 9 2017 lúc 14:17

Toán giải bằng cách lập PT: loại hai đội cùng thi đấu, mỗi người của đội này gặp một người của đội kia? | Yahoo Hỏi & Đáp

Nguyễn Hoàng Bảo Nhi
24 tháng 4 2020 lúc 16:12

Gọi số cầu thủ đội 1 và 2 lần lượt là: a và b

1 cầu thủ đội 1 đấu với 1 cầu thủ đội 2, số trận là b

số cầu thủ đội 1 là a

=> tổng số ván đấu là: ab

=> ab=4(a+b)

=> ab chia hết cho 2

Mà ít nhất 1 đội có số cầu thủ lẻ

=> đội còn lại có số cầu thủ chẵn và chia hết cho 4, giả sử độ đó có a cầu thủ ⇒b là số lẻ 

Ta có: ab=4(a+b)

⇔a(b-4)-4(b-4)=16

⇔(a-4)(b-4)=16

Vì a,b∈Z

⇒ a-4,b-4∈Z

⇒a-4,b-4 là nghiệm nguyên của 16

mà a chia hết cho 4 nên a-4 chia hết cho 4 ta xét các trương hợp:

+) \(\hept{\begin{cases}a-4=4\\b-4=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=8\\b=8\end{cases}}\)

(không thoả mãn b lẻ)

+ ) \(\hept{\begin{cases}a-4=8\\b-4=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=12\\b=6\end{cases}}\)

(không thoả mãn b lẻ)

+)\(\hept{\begin{cases}a-4=16\\b-4=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=20\\b=5\end{cases}}\)(thoả mãn)

Vậy mỗi đội có 20 và 5 cầu thủ 

Khách vãng lai đã xóa