\(\left(\sqrt{x}-1+5\right)\times\left(x-6\times\sqrt{x}=0\right)\)
\(\left(\sqrt{x}-1+5\right)\times\left(x-6\times\sqrt{x}\right)=0\)
ĐKXĐ : x\(\ge0\)
Ta có: \(\left(\sqrt{x}+4\right)\left(x-6\sqrt{x}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+4=0\\x-6\sqrt{x}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-4\left(L\right)\\\sqrt{x}\left(\sqrt{x}-6\right)=0\end{cases}}\)
=>\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=36\end{cases}}}\)
\(\left(\frac{x-2}{\sqrt{x}\times\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\times\left(\sqrt{x}+2\right)}\right)\times\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Lời giải:
Coi yêu cầu đề là rút gọn. Lần sau bạn chú ý viết đầy đủ đề.
ĐK: $x>0; x\neq 1$
Gọi biểu thức đã cho là $P$. Ta có:
\(P=\frac{x-2+\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Cho biểu thức P = \(\left(1+\frac{1}{\sqrt{x}-1}\right)\times\frac{1}{x-\sqrt{x}}\)
a) Rút gọn P b) Tìm x để \(P\times\sqrt{5+2\sqrt{6}}\times\left(\sqrt{x}-1\right)^2=x-2018+\sqrt{2}+\sqrt[]{3}\)
\(B=\left(\dfrac{3}{x-3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right)\times\dfrac{x-9}{\sqrt{x}}\left(x>0;x\ne9\right)\)
\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}\cdot\dfrac{x-9}{\sqrt{x}}=\dfrac{x+9}{x}\)
BÀI 1 : THỰC HIỆN PHÉP TÍNH
a, \(\left(1+\sqrt{3}-\sqrt[2]{2}\right)\times\left(1+\sqrt{3}+\sqrt[2]{2}\right)\)
b, \(\left(\dfrac{3}{2}\times\sqrt{6}+2\times\sqrt{\dfrac{2}{3}}-4\times\sqrt{\dfrac{3}{2}}\right)\times\left(3\times\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
BÀI 2 : rút gọn
B = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-2}}\)
bài 1: rut gọn
a, \(\sqrt{5\left\{1-a\right\}^2}\) với a>1
b,\(\sqrt{\dfrac{9\left[a^2+2a+1\right]}{144}}\)
c,\(\dfrac{2}{x-5}\times\sqrt{\dfrac{x^2\times10x+25}{64}}\)
d \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) với x≥0 và x≠1
a: \(\sqrt{5\left(1-a\right)^2}\)
\(=\sqrt{5\left(a-1\right)^2}\)
\(=\sqrt{5}\cdot\sqrt{\left(a-1\right)^2}\)
\(=\sqrt{5}\left|a-1\right|\)
\(=\sqrt{5}\left(a-1\right)\)(do a>1 nên a-1>0)
b: \(\sqrt{\dfrac{9\left|a^2+2a+1\right|}{144}}\)
\(=\sqrt{\dfrac{9}{144}\cdot\left|a^2+2a+1\right|}\)
\(=\sqrt{\dfrac{1}{16}\cdot\left|\left(a+1\right)^2\right|}\)
\(=\sqrt{\dfrac{1}{16}}\cdot\sqrt{\left|\left(a+1\right)^2\right|}\)
\(=\dfrac{1}{4}\cdot\left(a+1\right)^2\)
c:
ĐKXĐ: x<>5
Sửa đề:\(\dfrac{2}{x-5}\cdot\sqrt{\dfrac{x^2-10x+25}{64}}\)
\(=\dfrac{2}{x-5}\cdot\sqrt{\dfrac{\left(x-5\right)^2}{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\sqrt{\left(x-5\right)^2}}{\sqrt{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\left|x-5\right|}{8}\)
\(=\pm\dfrac{1}{4}\)
d: \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x}-\sqrt{x}\cdot1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\)
P=(\(\dfrac{2}{\sqrt{x}-1}-\dfrac{5}{x+\sqrt{x}-2}\))÷[\(1+\dfrac{3-x}{\left(\sqrt{x-1}\right)\times\left(\sqrt{x}+2\right)}\)]
rút gọn P
Rút gọn biểu thức sau:
\(\sqrt{12+6\sqrt{3}}-\sqrt{3}\)
\(\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\times\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)