Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC .
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . CM: vecto IJ=2/5 vecto AC - 2 vecto AB
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC . ( các b vẽ hình giúp mk nha)
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC
Cho tam giác ABC . Dựng các điểm I , J , K thỏa mãn điều kiện sau :
a) Vecto IA - 3 vecto IB = vecto AC
b) vecto JA - vecto JB + 2 vecto JC = 0
c) vecto KA + 2 vecto KB = 2 vecto CB
Mn giúp em với tại em đang cần gấp , tks :))
Cho tam giác ABC có trọng tâm G, điểm I đối xứng A qua B, J thuộc AC sao cho AJ = 2/3 JC. Chứng minh:
a) Vecto GI = 5/3 vecto AB - 1/3 vecto AC
b) G, I, J thẳng hàng
Khai thác giả thiết:
+ IA =2IB <=> IA = 2( AB -AI) <=> IA = -2AB <=> AI = 2AB
+ 3JA + 2JC =0 <=> 3JA + 2(JA+ AC) =0 <=> JA = ( -2/5)AC <=> AJ = (2/5) AC
Chỉ ra được vị trí các điểm I, J:
+ I đối xứng với A qua B ( tức B là trung điểm AI)
+ J nằm trên đoạn AC sao cho AJ = 2/5 AC
* Ta có:
+ GI = GA + AI = GA + 2AB
+ GJ = GA + AJ = GA + (2/5) AC
Suy ra:
GI - 5 GJ = -4 GA + 2(AB - AC) = -4GA + 2CB = -4GA + 2(GB -GC)
= -2GA +4GB ( chỗ này có áp dụng tính chất trọng tâm: GA +GB + GC =0)
Do B là trung điểm của AI => 2GB = GA +GI
Suy ra:
GI - 5 GJ = -2GA + 2GA + 2 GI
=> GI = - 5 GJ
Đẳng thức này suy ra I, J, G thẳng hàng => IJ đi qua G (đpcm)
I, J, G thẳng hàng
Do I đối xứng A qua B \(\Rightarrow\overrightarrow{AI}=2\overrightarrow{AB}\)
Do G là trọng tâm tam giác \(\Rightarrow\overrightarrow{AG}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{GA}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
a.
\(\overrightarrow{GI}=\overrightarrow{GA}+\overrightarrow{AI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}+2\overrightarrow{AB}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
b.
\(\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{JC}=\dfrac{2}{3}\overrightarrow{JA}+\dfrac{2}{3}\overrightarrow{AC}\Rightarrow\dfrac{5}{3}\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AJ}=\dfrac{2}{5}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GJ}=\dfrac{2}{5}\overrightarrow{AC}\Rightarrow\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}+\overrightarrow{GJ}=\dfrac{2}{5}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{GJ}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{15}\overrightarrow{AC}=-\dfrac{1}{5}\left(\dfrac{5}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\right)=-\dfrac{1}{5}\overrightarrow{GI}\)
\(\Rightarrow\) G,I,J thẳng hàng
Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
Cho tam giác ABC đều cạnh a có trọng tâm G và điểm I thỏa vecto IA -2 vectơ IB +4 vectơ IC= vectơ 0 tính biểu thức P= vectơ IA.(vtAB+vtAC) theo a
Cho tam giác ABC, lấy các điểm I, J sao cho vecto IC trừ vecto IB cộng vecto IA bằng 0 và vecto JA cộng vecto JB trừ đi ba lần vecto JC bằng 0
A,cmr:I,B và trọng tầm G của tam giác ABC thẳng hàng
B,cmr:vecto IJ song song với vecto AC.
Mong các bạn giúp mình vs:)