Giải phương trình:
\(2x^4+8=4\sqrt{x^4+4}+4\sqrt{x^4-4}\)
Giúp mình với!!!!!!!
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
Giải phương trình:\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
giúp mình với
Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)
Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)
\(\Leftrightarrow b\left(2a-b\right)=0\)
TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)
TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
Giải phương trình
1) \(\sqrt{x+1}+\sqrt{2x+3}=\sqrt{3x}+\sqrt{2x-2}\)
2) \(\sqrt{3}-x=\sqrt[4]{49-4\sqrt{3}.x^3-12\sqrt{3}.x}\)
giải giúp mình cần gấp lắm
ai giúp mình giải bài này với được k mình đang cần gấp ( xin cảm ơn)
Bài 1:
a,\(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 2:
a,\(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Bài 3:
a, \(x^2-7x=6\sqrt{x+5}-30\)
b, \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
c, \(x+y+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{-5}\)( câu này có thể sai đề nha )
d, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)
giải phương trình sau:
\(\sqrt{2x+1}+\sqrt{x-3}=4\)
giúp mình với
\(\Leftrightarrow2x+1+x-3+2\sqrt{\left(2x+1\right)\left(x-3\right)}=4\)
\(\Leftrightarrow2\sqrt{2x^2-5x-3}=6-3x\)
\(\Leftrightarrow8x^2-20x-12=9x^2-36x+36\)
\(\Leftrightarrow x^2-16x+48=0\)
\(\Leftrightarrow x=4;12\)
\(\sqrt{2x+1}+\sqrt{x-3}=4\)
ĐK x >= 3
\(\Leftrightarrow2x+1+x-3+2\sqrt{\left(2x+1\right)\left(x-3\right)}=16\)
\(\Leftrightarrow2\sqrt{\left(2x+1\right)\left(x-3\right)}=18-3x\)
ĐK \(x\le6\)
\(\Leftrightarrow4\left(2x^2-5x-3\right)=9\left(36-12x+x^2\right)\)
\(\Leftrightarrow8x^2-20x-12=324-108x+9x^2\)
\(\Leftrightarrow x^2-88x+336=0\)
\(\Leftrightarrow x^2-4x-84x+336=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-84\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(n\right)\\x=84\left(l\right)\end{cases}}\)vậy \(S=\left\{4\right\}\)
ĐK \(\hept{\begin{cases}2x+1\ge0\\x-3\ge0\end{cases}\Rightarrow x\ge3}\)
\(\Leftrightarrow2x+1+x-3+2\sqrt{\left(2x+1\right)\left(x-3\right)}=16\)
\(\Leftrightarrow2\sqrt{\left(2x+1\right)\left(x-3\right)}=-3x+18\)
\(\Leftrightarrow\hept{\begin{cases}-3x+18\ge0\\4\left(2x+1\right)\left(x-3\right)=\left(-3x+18\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le6\\4\left(x^2-5x-3\right)=9x^2-108x+324\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le6\\x^2-88x+336=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le6\\\orbr{\begin{cases}x=84\\x=4\end{cases}}\end{cases}\Leftrightarrow x=4}\)\(\Leftrightarrow\hept{\begin{cases}x\le6\\x^2-88x+336=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le6\\\orbr{\begin{cases}x=84\\x=4\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le6\\x=84,x=4\end{cases}\Leftrightarrow x=4\left(tm\right)}\)
Vậy x=4
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
giải phương trình
\(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(1+\sqrt{x^2+2x-3}\right)=4\)
giúp mình với !!!
đặt \(a=\sqrt{x+3}\), \(b=\sqrt{x-1}\)
khi đó \(\sqrt{x^2+2x-3}=ab\) và \(4=a^2-b^2\)
PT: (a - b)(1 + ab) = a2 - b2 hay (a - b)(1 + ab) = (a - b)(a + b).
* a - b = 0 (tự giải).
* 1 + ab = a + b hay 1 + 2ab + (ab)2 = a2 + 2ab + b2
hay 1 + (x2 + 2x - 3) = (x + 3) + (x - 1) (tự giải)
mik rất muốn tl giúp bạn nhưng mik ms có hok lớp 8 thôi Ayakashi
cảm ơn vì tấm lòng của bạn <3 Silverbulletphong