Tìm nghiệm nguyên dương của phương trình \(x^2-2y^2+xy-x+4y-12=0\)
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
Tìm nghiệm nguyên dương
x2=y(y+1)(y+2)(y+3)
Tìm nghiệm dươngx2-2y2+xy-x+4y-12=0
Tìm các nghiệm nguyên dương của phương trình : x^2 +x + xy -2y^2 - y =5
\(x^2+x+xy-2y^2-y=5\)
\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)
\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)
\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)
Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)
Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)
Do đó \(\left(x-y\right)\inℤ^+\)
Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))
\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))
Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)
Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.
Tìm tất cả các nghiệm nguyên dương của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)
\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)
e tự xét 2 th ra
tìm nghiệm nguyên của phương trình: x^2+2y^2-2x-4y+1=0
Tìm nghiệm nguyên dương của phương trình $(x+2y)(3x+4y)=96$.
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
ta có 96=6.16
xy là các số nguyên nên 3x+4y>x+2y
do đó xy là các nghiệm nguyên dương của phương trình khi
3x+4y+16
x+2y=6
giẢI hệ ta được x=4 y=1
vậy nghiệm của phương trình là (4,1)
tìm nghiệm nguyên của phương trình x^2-4x+2y-xy+9=0
\(x^2-4x+2y-xy+9=0\)
\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)
⇒\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)
Vì đề kêu tìm nghiệm nguyên nên ta có
Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)
Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
Tìm nghiệm nguyên dương của phương trình:
a,\(x^4-y^4=3y^2+1\)
b, \(x^2+xy+y^2=x^2y^2\)
c, \(3x^2+4y^2=6x+13\)
tìm nghiệm nguyên (x^2)y+4y=x+6
giải hệ phương trình {(2x+1)(y+2) = 9 và (2y+1)(x+3)=12
Bài 1:
$x^2y+4y=x+6$
$\Leftrightarrow y(x^2+4)=x+6$
$\Leftrightarrow y=\frac{x+6}{x^2+4}$
Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên
$\Rightarrow x+6\vdots x^2+4(1)$
$\Rightarrow x^2+6x\vdots x^2+4$
$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$
$\RIghtarrow 6x-4\vdots x^2+4(2)$
Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$
$\Rightarrow 40\vdots x^2+4$
$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)
$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$
Đến đây thay vào tìm $y$ thôi.
Bài 2:
Lấy PT(1) trừ PT (2) theo vế thu được:
$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$
Thay vào PT(1) thì:
$(2.\frac{5y-2}{3}+1)(y+2)=9$
$\Leftrightarrow 10y^2+19y-29=0$
$\Leftrightarrow (y-1)(10y+29)=0$
$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$
Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$
Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$