cho a>0,b>0 va a+b<=1. tim gtnn cua a^2+b^2+1/a^2+1/b^2
cho a,b>0 va a.b=1. CM (a+1)(b+1)>=4
cho a,b>0 va a+b=1. CM (a+1/b)^2 +(b+1/a)^2>=25/2
a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)
\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)
Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
cho a+b+c=0 va a³+b³+c³=0. Tinh A= a^2017+b^2017+c^2017.
cho a;b>0 va a+b=0
tim GTNN cua A=a^2+b^2
a+b=0 => a=(-b)
=>A=a^2+b^2=a^2+(-a)^2=a^2+a^2=2.a^2\(\ge\)2.0=0
Dấu = xảy ra khi a^2=0 =>a=0 =>b=0
Vậy Amin=0 khi và chỉ khi a=b=0
cho a, b>0 va c khac 0. cmr neu 1/a+1/b+1/c=0 thi can(a+b)=can(b+c)+can(c+a)
a, Cho F(x) = a x+b . Tim a,b biet f(0) = 3 va F(2) =-1
b, Cho F(x) =a x+ b. Tim a,b biet F(1) = -1 va F(-2) = 8
c, Cho F(x) =a x +b .tim a,b biet F(0) = 1 va F(-2) = -9
cho a,b thoả mãn : a*a*a+2*b*b-4*b+3=0 va a*a+a*a*b*b-2*b=0. Tính : a*a+b*b
Cho a,b,c khac 0 va a+b+c=0. Tính (1+a/b)(1+b/c)(1+c/a)
cho a\b < c\d va b >0 , d >0 CMR a\b < a+c\b+d
cho a b c khac 0 va a-b-c=0 tinh gia tri bieu thuc A=(1-c/a) (1-a/b) (1+b/c)
cho so thuc a,b,c voi a ,b duong va c\(\ne\)0 thoa man
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
1/chung minh c<0 , a+c>0 va b+c >0
2/chung minh \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)